Image reconstruction in proton computed tomography

SciComp Conference - Szeged 17-19 10 2024

ZSÓFIA JÓLESZ jolesz.zsofia@wigner.hun-ren.hu

> Supervisors: Gábor Bíró, Ph.D. Gábor Papp, Ph.D.

EÖTVÖS LORÁND university | budapest

Motivation

- Cancer treatment: surgery, chemotherapy, <u>radiotherapy</u>, immunotherapy
- Radiotherapy: uses ionizing particles
- What kind of particles?
 - Photons
 - → Protons
 - Heavy ions

[Seo Hyun Park and Jin Oh Kang. Basics of particle therapy i: physics. Radiation oncology Journal, 29(3):135, 2011.]

Layout figure of HIT Centre (Heidelberg)

[Ugo Amaldi, Manjit Dosanjh, Jacques Balosso, Jens Overgaard, and Brita Sørensen. A facility for tumour therapy and biomedical research in south-eastern europe. 09 2019.]

2

Problems with imaging – and the solution

X-ray CT vs. proton CT

- Today X-ray CT is used
- We need to know the range of the protons → Relative Stopping Power (RSP): how much does it slow down in a material compared to water
- Difference between the absorption of photons and the energy loss of protons
 → conversion is not accurate between Hounsfield units* and RSP
- Solution: let's do the imaging with protons! → proton CT

*The quantitative scale of X-ray absorption

The Bergen pCT Collaboration

Iterative methods for image reconstruction

Initial image

Iterative methods for image reconstruction

The Richardson-Lucy algorithm

 x_i^{k+1}

Vector

values

- Statistical iterative algorithm
- Maximum Likelihood -**Expectation Maximization** (ML-EM)
- Originally used in optics
- Input data: from detector or containing RSP Monte Carlo
- MLP calculation
- **RSP-distribution calculation**

Very difficult technically (~millions of proton trajectories)

- → Using GPU (CUDA)
- Goal: Finding optimization regarding the number of iterations and protons

u

 $u_{\rm out}$

 d_{exit}

Depth u

 $- d_{entrv} \longrightarrow WET_{phantom}$

 $u_{\rm in}$

Development of the framework

Steps of the framework

Development of the framework

Calculating RSP distribution with Richardson-Lucy

- Data to be processed is grouped in batches
- The consecutive iterations are compared
- If MSE > given threshold before the 10th iteration, threshold gets divided by 2, otherwise iterations stop in that batch

Significant speed-up in runtime

Evaluating the algorithm - phantoms

Derenzo phantom

- 200 mm diameter water cylinder with 6 sectors of 1.5-6 mm diameter aluminium rods
- Used for measuring spatial resolution

CTP404 phantom

- 150 mm diameter epoxy cylinder with 8 different material inserts with 12.2 mm diameter
- Used for measuring reconstruction accuracy for RSP

Spatial resolution with Derenzo phantom

Spatial resolution with Derenzo phantom

RSP reconstruction accuracy with CTP404 phantom

RSP reconstruction accuracy with CTP404 phantom

proton path probability map for MLP

~-4% for our research, runtime is less

(Cubic spline fitting for MLP calculation)

calculation)

15

Materials

Summary of achievements and future plans

- Richardson-Lucy algorithm used for the first time in medical imaging*
- Promising results, comparable with other used algorithms
- But still needs further developments for clinical usability → Using Machine Learning for noise filtering, MLP calculation, realistic phantoms, etc.; achieving shorter runtime

*Gábor Bíró, Ákos Sudár, Zsófia Jólesz, Gábor Papp, Gergely Gábor Barnaföldi. Proton Computed Tomography Based on Richardson-Lucy Algorithm. ArXiv:2212.00126.

Thank you for your attention!

My research was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants under the contract numbers OTKA K135515 and 2021-4.1.2-NEMZ_KI-2024-00033.

Backup - Differences between the RSP values

Backup - Mean Absolute Error

Mean Absolute Error: the average absolute difference between corresponding pixels

$$MAE = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} |\mathrm{im1}(i,j) - \mathrm{im2}(i,j)|$$

