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WHAT IS NISQ AND WHY DO WE CARE?
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BASIS OF QUANTUM SUPREMACY

• saving a 50 qubit quantum states 
requires 250=1.126E15 complex 
numbers 

• need to accomplish a sufficiently 
general task (otherwise it is not a 
computer) 

• need to be coherent enough / low 
enough errors (otherwise it is 
classical) 

• needs to be certified without 
simulation 

• Shown in 2019 with a synthetic 
benchmarks

|ψ⟩ =
1

2n/2

2n−1

∑
s=0

cs |s⟩



STATUS OF HARDWARE

• Quantum computers are intrinsically highly sensitive to errors 
(more mature hardware will reduce but not eliminate that!) 

• Current error rate: 0.1% per hard operation - 1000 steps 
• Applied benchmarks use 10ish qubits within large chips 
• Next goal: Use more than 50 qubits for real-world applications 
• Roadmaps for 1000 qubits need an error roadmap 
• (Making 1000 Josephson junctions is routine)  
• Key ingredient: Improvement of materials
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Error rate, not qubits



THE ERA OF EARLY QUANTUM SUPREMACY

• Quantum advantage based on exponential need 
for memory: Most likely irreversible 

•  N qubits correspond to   floating point numbers 
- beyond large HPC at N>50 

• Current goal: Better machines and more efficient 
algorithms: NISQ Era (NISQ: Noisy intermediate-
scale quantum technologies) 

• NISQ-Macines are R&D infrastructure

2N
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Meaning of the Google 2019 and later results

Up to 50 qubits Beyond 50 qubits Beyond 1MQubits

Basic research 
in physics

Quantum advantage 
In synthetic  
benchmarks

Provable quantum 
advantager

NISQ-Era

Applied quantum  
advantage possible?



NISQ: QUANTUM COPROCESSOR

• Inside: Parameterized quantum circuit = 
Algorithm that depends on classical 
numbers 

• Outside: Classical optimizer improving that 
numbers 

• Uses fast quantum sampling of space 
• Example: Quantum Approximate 

Optimization Algorithm (QAOA) 
• Speedup conjectured 
• Shallow circuit + reset during classical 

optimization: NISQ friendly 

9

Classical algorithm calls a shallow and fat routine

Superconducting quantum simulator for the Fermi-Hubbard model

PRA 93, 032303 (2016); PRA 94, 062304 (2016); arXiv:1701.XXXXX

Pierre-Luc Dallaire-Demers1, Per J. Liebermann2 and Frank K. Wilhelm2

1Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
2Institut für Theoretische Physik, Saarland University, Saarbrücken, Germany

Abstract

Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known
for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range
e↵ects such as order parameters, a powerful method to compute the cluster’s Green’s function consists in finding its self-energy through
a variational principle. This allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model.
However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation
variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory
usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also
provide a gate decomposition of the cluster Hamiltonian and a simple planar superconducting architecture for a quantum simulator that
can also be used to simulate more general fermionic systems. A quantum computer with a few tens of qubits could therefore simulate the
thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

Self-Energy functional theory

The Hamiltonian of the Fermi-Hubbard model (FHM) [1] describes
a simple electronic band in a periodic lattice � where electrons are
free to hop between orbitals with kinetic energy t and interact
via a simple two-body Coulomb term U . The occupation of the
electronic orbitals is controlled by the chemical potential µ.

H = �t

X

hi ,ji,�

c
†

i�cj� � U

X

i

ni"ni# � µ
X

i ,�

ni� (1)

The self-energy functional theory (SFT) can be used as a general
theoretical framework to systematically construct approximations
to compute the thermal properties and the spectrum of single-
particle excitations of a certain class of strongly correlated electron
systems. The prototypical system that can be studied is the FHM.

Figure: The reference system generates a manifold of trial self-energies

⌃
0
parametrized by single-particle parameters t

0
. The self-energy functional

[5] can be evaluated exactly on this manifold as the interaction part of the

Hamiltonian is left unchanged.

The prime application of the SFT is to construct the variational
cluster approximation (VCA) [2]. An approximate solution of an
infinite lattice is obtained from an all-order perturbation theory of
terms connecting exactly solvable clusters. If Nc is the number of
cluster along each dimension of the lattice, then the superlattice
reciprocal space is given by

k̃x/y =
2⇡qx/y
Na

, qx/y = 0, . . . , Nc � 1 . (2)

Figure: The essence of the VCA method is to remove the one-body links

(denoted t) between small clusters (contained in V) from the lattice � and

consider only the reference lattice �
0
whose Hamiltonian H

0
is block

diagonal in the Wannier basis and easier to solve than the complete

problem H. The solution become asymptotically exact as the clusters are

made to include more sites.

The set of one-body terms linking the clusters are
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The exact Green’s function of a cluster is written as
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Solutions to the FHM can be found by varying the functional of the
self-energy until a physical value of the Green’s function is found
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Î� V̂

⇣
k̃

⌘
Ĝ
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and the Dyson equation is satisfied:

@⌦t

@t0
= 0. (6)

Then the approximate Green’s function of the lattice of clusters is
given by

G
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and the Green’s function of the full lattice is obtained by a peri-
odization procedure such that

G (k,!) =
1

Lc

LcX

i ,j=1

Gij (k,!) e
�ik·(ri�rj). (8)

Quantum variational cluster approach

Scaling to larger clusters on classical computers requires an ex-
ponential amount of memory as a function of cluster size. We
propose solving the cluster problem on a quantum computer as a
quantum subroutine.

Figure: Hybrid quantum-classical loop to solve the Fermi-Hubbard model

using the variational cluster approach.

The quantum circuit involved in creating a low-temperature Gibbs
state [4] of the cluster Hamiltonian and measuring its time-
dependent correlation functions is shown in the next figure:

Figure: When the bath is traced out the system channel S is left in a

Gibbs state from which the di↵erent correlation functions can be read from

the one-qubit register P . Register R is used as a digital component and q

should therefore be the size required for the desired floating point accuracy

on s⇤, which is related to the inverse temperature � [4]. The numbers in

the controlled gates of register R denote the index of the qubit which is

acting as the control.

After a Gibbs state is prepared:
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the correlation functions of the Majorana operators
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are measured using the following circuit:

Figure: Circuit to measure the correlation function Cµ⌫ (⌧) from an input

Gibbs state

The measured functions are extracted from the P register as prob-
abilities
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There is a linear map to recover the single-particle correlation func-
tions.
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The retarded Green’s functions can be recovered from

G
R

µ⌫ (!) = �i lim
⌘!0+

1X

s=0

C
(s)

µ⌫

(⌘ + i!)s+1
. (13)

Gate decomposition of a square cluster

The Fermionic creation and annihilation operators are mapped to
Pauli operators using the Jordan-Wigner transformation:

c
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The important types of Hamiltonian terms for a cluster are intro-
duced through the concrete example of a 2⇥ 2 cluster.

Figure: For a n = 2Lc square lattice, the sites are labeled sequentially in

linear stripes, this ensures that nearest-neighbor coupling terms of the

Hamiltonian in the Jordan-Wigner basis can be represented as Pauli string

of length at most O
�
2
p
Lc

�
.

The form of the Hamiltonian of a 2D cluster including the varia-
tional terms is the following:

H
0 = Hkin +Hint �Hs�pair �Hdx2�y2

�Hlocal �HAF. (15)

The local terms include the variational chemical potential that
enforces thermodynamical consistency and a possible symmetry-
breaking anti-ferromagnetic ordering:
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The gate decomposition of the local terms has the form

Figure: The local terms of the cluster Hamiltonian corresponding to the

time evolution of Hlocal and HAF. The single qubit rotation

R
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The kinetic term that describes nearest-neighbor hopping is

Hkin = �t

X
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It can be exactly implemented on a quantum simulator with a gate
sequence of the following form:

(a)

(b)

Figure: The hopping terms of the cluster Hamiltonian corresponding to

the time evolution of Hkin are decomposed into gates.

The two-qubit + and � gates correspond to ±iSwap, which can
be physically implemented by �x ⌦ �x + �y ⌦ �y Hamiltonians.
The FHM has local interaction terms of the form

Hint = U

X

i

ni"ni#. (18)

They can be implemented with the gate sequence

(a)

(b)

Figure: The interaction terms of the cluster Hamiltonian corresponding

to the time evolution of Hint are decomposed into gates. The angle

⇥int ⌘ +�⌧U . The single-qubit rotation gate R
⇥
�U ⌘ e

+i ⇥2 e�i ⇥2 �y .

In the case of attractive interaction U < 0, the FHM displays a
s-wave superconducting order parameter. The symmetry-breaking
term is modeled by
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It can be decomposed as the following gate sequence:

(a)

(b)

Figure: The s-wave pairing terms of the cluster Hamiltonian

corresponding to Hs�pair are decomposed into gates. The angle

⇥� ⌘ ��⌧�0

s .

In the case of repulsive interaction U > 0 close to half-filling, the
FHM shows a d-wave ordering parameter of the form
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where

dij =

8
>><

>>:

1 if Ri � Rj = ±aex

�1 if Ri � Rj = ±aey

0 otherwise.

(21)

The gate sequence for a d-wave ordering term has the form

(a)

(b)

(c)

Figure: The d-wave pairing terms of the cluster Hamiltonian

corresponding to the time evolution of Hdx2�y2
are decomposed into gates.

The angle ⇥d ⌘ ��⌧�0

d .

Since the kinetic and interaction terms of the FHM do not com-
mute, a Trotter-Suzuki approximation must be used to do the time
evolution of the simulated system:
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The time decimation can be used to achieve arbitrary precision of
the evolution operator:

Figure: Numerical worst case error
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d = 3. The

interaction U = 8 and all energy and time units are made unitless by

referencing them to the hopping energy t = 1.

Superconducting quantum simulators

As shown in the following table, the amount of quantum resources
to simulate a cluster of the FHM scale favorably when compared
to the memory requirement on a classical computer.

Figure: Quantum resources required to solve a cluster of the

Fermi-Hubbard once the Gibbs state is prepared. The information processed

by the classical computer is proportional to the number of measured

correlation functions which scales quadratically with the number of orbitals

in the cluster.

The form of the quantum algorithm suggests a natural layout of
qubits where the analog simulation occurring in registers S + B

is separated from the digital register R by qubit P , which is both
used to mediate information and measure correlation functions.

Figure: Proposed layout of physical qubits with no crossing interaction

line. Boxes represent physical qubits in di↵erent labelled registers. Arbitrary

single qubit gates are assumed to be implementable on every qubit.

The following notation is introduced to apply controlled gates from
register R on registers S+B by swapping back and forth in register
P :

Figure: How the interaction through register P is done.

This way, it is possible to build a QFT with no crossing interaction
lines.

Figure: Recursive gate decomposition of the QFT . It uses

2(n � 1) SWAPs and an ancilla qubit P . This variant can be implemented

physically by having all qubits couple to the middle qubit P .

Here we introduce Superconducting Planar ARchitectures for
Quantum Simulations (SPARQS). We present two variations. The
first is based on Google’s RezQu architecture where qubits are
coupled by bringing them in and out of resonance with a fixed-
frequency bus:

Figure: This is a modified RezQu architecture [3]. Each

frequency-tunable qubit (represented by a crossed box) is coupled to a

common transmission line. Not shown are the flux control lines of the

qubits to change their detuning from the bus.

The two-qubit ±iSwap can be implemented quickly in this archi-
tecture using optimal control methods:

10�4

10�3

10�2

10�1

100

20 24 28 32 36 40 44 48 52 56 60

In
fid

el
ity

1
�
�

Gate duration tg [ns]

iSwap
iFredkin

Figure: Speed limit for the 3 Z -controls of the iFredkin for the fidelity

� = 0.9999, compared to the iSWAP-gate with only two Z -controls, S1

ans S2, and P is set to a parking frequency of 10GHz. The target fidelity

in both cases is � = 0.9999.

The second variant is based on IBM’s architecture where fixed-
frequency qubits are coupled with tunable couplers:

Figure: A modified IBM architecture [6] with fixed frequency

superconducting qubits that also implements the quantum simulator layout.

Our main results are the following:

I It scales linearly in memory: 1 spin orbital corresponds to 1
qubit.

I It scales favorably in number of measurements which are
proportional to L

2

c at worst.

I The number of time measurements determines precision in
frequency space (same as classical, decoherence means less
information, good enough is possible).

I The most di�cult terms require O
⇣
L

2D�1
D

c

⌘
±iSWAPs (the

longest gate).

I Trotter-Suzuki errors can be made as small as desired.

I The proposed architecture has no crossing interaction lines
whose number scales as O (Lc) with no long range
interaction required.

I The number of gates that need to be tuned scales as
O (Lc).

I The architecture could be used to factorize if modular
exponentiation can be implemented in register S + B .
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OPTIMIZING ON QUANTUM COMPUTERS AND QAOA
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(Random) Optimization problems
• Many NP-hard or/and complete probelms afford classical Ising formulation:

• For random couplings/graphs Ising Hamiltonian 

    defines the spin glass  
• Examples:

              ▪ Number partitioning problem

▪ Graph coloring 

▪ Hopfield neural network

See A. Lucas “Ising formulations of many NP problems“, 2014  

𝐻𝑃 = −
𝑁

∑
𝑖<𝑗

𝐽𝑖𝑗𝜎(𝑖)
𝑧 𝜎(𝑗)

𝑧 −
𝑁

∑
𝑗=1

h𝑗𝜎(𝑗)
𝑧

• Optimal string corresponds to the ground state !

              



Quantum annealing

𝐻(𝑠) = 𝑠 𝐻𝑃 + (1 − 𝑠)𝐻𝐷,      𝐻𝐷 = −
𝑁

∑
𝑗=1

𝜎(𝑗)
𝑥

• Use of adiabatic theorem to find the ground state

• D-wave system: 

     - 5000+ flux qubits with tunable couplings 

Imbedding of a problem graph into Chimera one of D-wave



SOLVING BY PHYSICS

• Transform a simple into a hard 
optimization problem  

• Stay in the ground state  
• Speed protected by energy gap, based 

on the superconducting tunnel effect 
• Predicting the gap is NP-hard 
• Has reached more than 2000 qubits 

already 
• Discussion about inefficiencies 
• Speedup debated
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Adiabatic algorithms

Speed: (Gap)-1

Tunnel effect
Needs: Many qubits, a pre-settable interaction, 
Global adiabatic control



Quantum Approximate Optimization Algorithm (QAOA)

• Evolution: variational ansatz for the ground state ~ Trotterization of adiabatic protocol

• Optimum: to be minimized over a set of (  )𝛽𝑗, 𝛾𝑗

|𝛽, 𝛾⟩ =
𝑝

∏
𝑗=1

𝑒−𝑖𝐻𝐷𝛽𝑗𝑒−𝑖𝐻𝑃𝛾𝑗( |+⟩𝑋)
⊗𝑁

𝐸∗(𝛽, 𝛾) = ⟨𝛽, 𝛾 |𝐻𝑃 |𝛽, 𝛾⟩

E.Farhi, J.Goldstone, S. Gutmann‘ 2014  

A. Wallraff et al., 2020



NISQ: QAOA ALGORITHM

• Speedup conjectured 
• Shallow circuit + reset during classical 

optimization: NISQ friendly  
• Allows to implement higher-order / long 

range interactions by compilation (rather 
than hard-wire) 

• Feedback loop allows to adjust to variable 
gap  

• Speedup claimed for MAXCUT (Farhi) then 
quantum-inspired algorithm with same 
complexity appeared (Hastings)
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Classical algorithm calls a shallow and fat routine
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β1 βnβ2 βn−1γ1 γnγ2 γn−1…

Needs: Reasonable qubits, fast I-O and low-latency
Reprogramming

Drive: e−iβHd Hd = ∑
i

Xi

Problem -  - with diagonal  e−iγHp Hp

Hp = ∑
i

hiZi + ∑
i<j

JijZiZj + ∑
i<j<k

KijkZiZjZk + …

∇β,γ E



WHERE CAN SPEEDUP (NOT) COME FROM? 

Exponential speedup on general NP-hard combinatorical optimization problems extremely 
unlikely (viz: Optimality of Grover) 
A lot of heuristics and empiricism 
Our goal: Get a good solution for cost fuctional with high probability - why should that 
work? 
Note: Other quantum algortihms (Shor, Grover) contain uncomputing of superpositions for 
that purpose 
So - under which conditions does the state converge onto a narrow distribution, centered 
at low values? 
Our statement is: Often this has to do with classical simulability

16

A physical argument



QAOA AS A DISCRETE PATH INTEGRAL
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Start: Hadamard 
State - all at once

1
2n/2

2n−1

∑
s=0

|s⟩
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Give all of them a phase factor

1
2n/2

2n−1

∑
s=0

e−iγE(s) |s⟩

Mix-Phase etc. 
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Continuous path integral: Compute time evolution in space

U(xi, xf ) = ∑
x1

lim
δt→0 ⟨xi e−iδtEkin |x1⟩⟨x1 |e−iδtEpot⋯ xf⟩ = ∫

xf

xi

𝒟x(t)eiS[x(t), ·x(t)]

Path integral = sum over all paths, each with their phase factor 
Aha: Kinetic energy similar to driver / mixer - potential energy similar to problem Hamiltonian - can we access 
path integral methods? 
Analogy even closer for AQC with arbitrary annealing schedule



SEMICLASSICS

We can do a lot of optics without waves - a 
lot of mechanics without quanta - classical / 
particle limit 
Those are driven by variational principles for 
wavepackets 

Optics: Fermat principle - Light ray 

maximizes the total time  

Mechanics: Newtons equation follow 
from the stationary action 

t = ∫
ds
c

δS = 0

18

Emergence of a particle-like theory from a wave-like theory

∫
xf

xi

𝒟x(t)eiS[x(t), ·x(t)]

Dominated by  - else oscillatory integrand 

Semiclassics: Take  into account

δS = 0

δ2S



WHAT CAN WE DO FOR QAOA / AQC

Mean field theory (in real time):  replaced by  

 with self-consistent field  

Know in equilibrium thermodynamics: Works well in high (graph) dimension 
Keeps two real coordinates for qubit state, keeps some correlation, throws away 
entanglement 

Hp = ∑
i

hiZi + ∑
i<j

JijZiZj

HMF = ∑
i

hi,mfZi hi,mf = hi +
1
2 ∑

j≠i

Jij⟨Zj⟩

19

Main ingredient: Qubits / spins instead of scalar waves



Mean-field AOA
• Hamiltonian with the SU(2) Poisson bracket for classical spins

𝐻(𝑛) = − 𝛾(𝑡)
𝑁

∑
𝑖<𝑗

𝐽𝑖𝑗𝑛(𝑖)
𝑧 𝑛(𝑗)

𝑧 − 𝛽(𝑡)
𝑁

∑
𝑗=1

𝑛(𝑗)
𝑥 ,   {𝑛(𝑖)

𝑎 , 𝑛(𝑗)
𝑏 } =  𝛿𝑖𝑗𝜀𝑎𝑏𝑐𝑛(𝑖)

𝑐

• Initial state:

• Classical (~mean-field) evolution,

 for all 
spins
 →𝑛  

(𝑖)
= (1, 0, 0)

→𝑛  
(𝑖)   Bloch sphere

𝑑
𝑑𝑡

 𝑛
(𝑘)

𝑎
(𝑡) =  {𝑛(𝑘)

𝑎 (𝑡), 𝐻}
can be solved exactly using

Trotterization scheme

𝛾𝑖

𝛽𝑖



Mean-field AOA
• The Bloch vectors evolve according to

�̂�𝐷 =  
1 0  0
0
 0 

cos(2𝛽(𝑘))
− sin(2𝛽(𝑘))

sin(2𝛽(𝑘))
cos(2𝛽(𝑘))

�̂�𝑃 =  
cos(2𝛾(𝑘)𝑚𝑖(𝑘)) sin(2𝛾(𝑘)𝑚𝑖(𝑘)) 0

−sin(2𝛾(𝑘)𝑚𝑖(𝑘))
 0 

cos(2𝛾(𝑘)𝑚𝑖(𝑘))
0

0
1

→𝑛
(𝑖)

(𝑗) =
𝑗

∏
𝑘=1

�̂�𝐷(𝑘)�̂�𝑃(𝑘)�̂�(𝑖)(0)

𝑚𝑖(𝑘) = ∑
𝑗

𝐽𝑖𝑗𝑛(𝑗)
3 (𝑘) + h𝑖

where

- driver matrix

- problem matrix

- mean-field at discrete time k

Note: only the problem matrix depends on the mean-field m(k)

• Total time scales as  ~ 𝑝𝑁2,   𝑝 ≫ 1



Sherrington-Kirkpatrick model

𝐻𝑃 = −
𝑁

∑
𝑖<𝑗

𝐽𝑖𝑗𝜎(𝑖)
𝑧 𝜎(𝑗)

𝑧 ,   ⟨𝐽2
𝑖𝑗⟩  = 1/𝑁

Parisi‘79:  

lim
𝑁→∞

⟨𝐸0/𝑁⟩𝐽
= − 0.763166…

• results from spin-glass replica symmetry breaking theory 

i.i.d. random Gaussian



Bencmarking of QAOA for SK-model

• Semidefinite programming algorithm:  ⟨𝐸∗/𝑁⟩𝐽
= − 2/𝜋

• QAOA is not able to achieve Parisi‘s result at finite p

Farhi et al. ‘2019:  



Large-N scaling
𝜀𝑃 = 0 . 763166…• Parisi „constant“: 

M. Palassini‘ 2003,     𝜔 ≅ 2/3 = 0 . 666…

• Hybrid of genetic algorithm (GA) & local optimization

 samples104

Fluctuations of  (MF-AOA vs. exact)𝐸0

𝑁 = 20

• Mean-field AOA outperforms QAOA on average at large N

0 . 71



NP hardness in quantum annealing

𝐻 = −
𝑁

∑
𝑖<𝑗

𝐽𝑖𝑗𝜎(𝑖)
𝑧 𝜎(𝑗)

𝑧 − G(𝑡)
𝑁

∑
𝑗=1

𝜎(𝑗)
𝑥

• Exponentially small gaps are due to MBL physics (~ NP hardness) 
• The 1st gap at Γ𝑐 is polynomial in N

MBL

Ergodic phase

Knysh‘2015:  
• Analyis of Hopfield model



ANALYZING FLUCTUATIONS

• MF-AOA=stationary action path 

• Leading correction is of second order  - Gaussian path integral 

 

• Here coded via spins - quadratic correction to the action 

 
• Eigenmode analysis of this Dirac-type equation - steep or flat 

landscape / encoded as Lyapunov exponents 
• Fluctuations = paramagnons

δ2S

∫
xf

xi

𝒟x(t)eiS[x(t), ·x(t)] ≃ eiScl ∫ 𝒟δx(t)e−δxKδx δx = x − xcl

7

limit, one then arrives at

A(T ) =

Z
gf

g0

dg exp {�(SI + SH)}

=

Z
gf

g0

dg exp

(
i

Z
T

0
dthg|[i@t � Ĥ(t)]|gi

)
,

(29)

where dg is a joint integration measure over all spins
and time slices, and constructed following either Eq. (B4)
or (B12). For instance, in complex coordinates zi(t) =
xi(t) + iyi(t) for the ith spin, one has

dg =
NY

i=1

dgi, dgi /

Y

k

dxi(tk)dyi(tk)

(1 + |zi(tk)|2)2
. (30)

The first term of the action in Eq. (29) is the Berry phase,
and we show in Appendix B 3 that it can be written as

SI =

Z
T

0
dt hg|@t|gi =

1

2

NX

i=1

Z
T

0
dt tr(�3g

�1
i

@tgi), (31)

where the spin ‘displacement operators’ gi are defined in
Eq. (B2). When expressed in terms of the Bloch vectors
n(i)(t) (cf. Appendix B 4), the Hamiltonian part of the
action becomes

SH = �is
NX

i=1

Z
T

0
dt


hi +

X

j>i

Jijn
z

j
(t)

�
nz

i
(t)

� i(1 � s)
NX

i=1

Z
T

0
dt �in

x

i
(t).

(32)

B. Fluctuations Around Mean-Field

In this section we consider the fluctuation corrections
to the mean-field on the level of the Gaussian approxi-
mation. To this end let us work using complex coordi-
nates (zi, z̄i) with the index i referring to a particular
spin. We assume that saddle-point trajectories ~n(i)(t) of
all spins are known to us by virtue of Eq. (10). Through
stereographic mapping (B9) they define the correspond-
ing trajectories zi(t) and z̄i(t) in complex plane C, which
in turn generate coset elements gi(t) of each spin de-
fined by (B10). Fluctuations in the path integral are due
trajectories g0

i
which are close to gi(t) (here and below

0 doesn’t mean a time derivative but rather just another
coset element!). We define a shifted coset element g0

i
via

g0
i
�3g

0
i

�1
= gig̃i�3(gg̃i)

�1, (33)

where g̃ is close to the north pole,

g̃i =
1

(1 + |⌘i|2)1/2

✓
1 �⌘⇤

i

⌘i 1

◆
, |⌘i| ⌧ 1. (34)

The coordinates (⌘i, ⌘̄i) will be used in the following to
parameterize Gaussian fluctuations in the spin path in-
tegral. The relation (33) means that g0

i
⇠ gig̃i, where the

equivalence is understood in the sense of coset structure,
i.e. up to a right multiplication by any h commuting with
�3 (if g1 ⇠ g2 then g1 = g2h with h�3 = �3h).
Assume further that g0

i
is expressed via complex coor-

dinates (z0
i
, z̄0

i
). A simple exercise (see Appendix B) then

gives

z0
i
=

zi + ⌘i
1 � z̄i⌘i

, z̄0
i
=

z̄i + ⌘̄i
1 � zi⌘̄i

. (35)

These relations establish coordinates of shifted trajecto-
ries (z0

i
) in terms of coordinates of the original ones (zi)

and fluctuations parameterized by ⌘i. When the latter
are small, one expands

�zi := z0
i
� zi = (1 + |zi|

2)(⌘i + z̄i⌘
2
i
+ · · · ). (36)

The relation between �zi and ⌘i is hence non-linear. The
rational behind this is that the measure in path integral
is preserved, provided one goes from integration over z0

i

to ⌘i at fixed saddle point trajectory gi, i.e.

dg0
i

z
0
i=z

0
i(⌘i)
= dg̃i. (37)

with dgi defined in Eq. (30), see more details in Ap-
pendix A. In addition to that we note that in the Gaus-
sian regime of fluctuations (|⌘i| ⌧ 1) the measure in
⌘-variables becomes flat,

dg̃i ⇡

Y

t

d⌘i(t)d⌘̄i(t). (38)

To discuss the fluctuation, it is advantageous to consider
the most general action,

S = SI + SH

=
1

2

X

i

Z
T

0

żiz̄i � zi ˙̄zi
1 + |zi|2

dt+ i

Z
T

0
dtH(z, z̄),

(39)

with some classical Hamiltonian H(z, z̄) which depends
on the coordinates of all spins, and specify its concrete
form only in the very end of calculations.
Let the classical path at t = T is very close to bit string

� = (�1,�2, . . . ,�N ) with �i = ±1. As shown in Ref. [6],
the classical path, which follows from �S = 0, obeys the
following Hamiltonian equations,

˙̄zi = i(1 + |zi|
2)
@H

@zi
, żi = �i(1 + |zi|

2)
@H

@z̄i
. (40)

It is an equivalent form of saddle-point equations (B30).
To derive the action of Gaussian fluctuations S[⌘, ⌘̄]
around the classical path, one should parameterize vari-
ations �zi’s in terms of ⌘i’s as it was derived in (36). The
calculations sketched below yield the following result:

S[⌘, ⌘̄] =
i

2

Z
t

0
(⌘̄, ⌘)


�i@t + Â B̂

B̂† i@t + Â⇤

�✓
⌘
⌘̄

◆
.

(41)
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Judging the quality of MF-AOA



Spectrum of Lyapunov exponents

𝑁 = 11
• Fluctuations:

easy instance hard instance

maximal exponent

• 2nd peak: ergodic-to-MBL transition



SIMULATING STRONGLY CORRELATED ELECTRONS 
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1

Fermi-Hubbard model

ĤFH = − t ∑
⟨i, j⟩,σ

( ̂c†
i,σ ̂cj,σ + ̂c†

j,σ ̂ci,σ) + U∑
i

̂ni,↑ ̂ni,↓

t′ 

t′ 

U′ 

w

U′ 

U′ 

U′ 

Orbitals Byte

2 64B

4 256B

8 4MB

36 1TB

49 9PB

1. Motivation (i) 
       Electronic correlation is captured in the Fermi-Hubbard model



3

1. Motivation (iii) 
       Green’s function gives access to phase space

Single-particle 
Green’s function

Single-particle 
Green’s function

Single-particle 
Green’s function

Single-particle 
Green’s function

Single-particle 
Green’s function

Single-particle 
Green’s function

Many-body 
Green’s function

• Average particle density              
• Superconducting gap               
• Density of  states                     
• Cooper pair coherence length 

⟨ni,σ⟩
Δ

N(ω)
ξ

Selection of  observables

Requires exact Green’s function, e. g. via 
Variational Cluster Approach (VCA)

+

=

⌦t[⌃] = ⌦0 � Tr ln(I� V G0)

=

Variational Cluster Approach

15.12.2023



2

G<
ij (τ) = − i⟨Ψ|eiHτcie−iHτc†

j |Ψ⟩

G>
ij (τ) = i⟨Ψ|c†

j eiHτcie−iHτ|Ψ⟩

1. Motivation (ii) 
       Introducing the single-particle (retarded) Green’s function

GR
ij = θ(τ)[G<

ij (τ) − G>
ij (τ)]

Retarded single-particle Green’s function

t = 0

t = τ

t < τ

Linear response Green’s function

Ĥ(t) = Ĥ′ + ̂V(τ)

̂V(t) = ∑
i

Φi(τ) ̂Ai(τ)

δ⟨ ̂Ai(τ)⟩ = ∑
i

χij(τ, τ′ )Φj

χij(τ, τ′ ) = − iθ(τ − τ′ )⟨[Ai(τ), Aj(τ′ )]⟩

perturbation 
sources

some operator, e. g. 
hopping operator

Response 
function

K
ubo’s form

ula

15.12.2023
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3. Toy model: Two-site dimer (i) 
       Course of  action

Initialization stage Time evolution Measurement

Ground state preparation Trotterization

Variational 
Hamiltonian 

Ansatz

U(θ ) =
n

∏
k=1

p

∏
j=1

e−iθj,k Hj

Application of  elementary circuits

• Hopping

• Repulsion

Guess state
|0⟩0

|0⟩1

|0⟩2

|0⟩3

H

H

X

X

qi,↑

⋯

qi,↓ Z+
θ
2

Z θ
2

Z+
θ
2

qiσ

⋯

H

qjσ Z H Zθ H

H X+
π
2

X+
π
2

Zθ Xπ
2

Xπ
2

Z

⟨ZiσZjσ′ ⟩

qiσ

qjσ

⋯
Smn

H

H/

H′ = H0 + HU = − t∑
σ

(c†
σbσ + b†

σcσ) +
U
2

(n2
c − 2nc)

Hubbard site Bath site

Perturbation

15.12.2023



q0

H

H

q1

q2

q3

|1⟩d H

H
Zθ Z+

tϵd

Ut

H

H

10

3. Two-site dimer (ii) 
       Ground state preparation via Variational Hamiltonian Ansatz

Non-interacting 
GS

|0⟩0

|0⟩1

|0⟩2

|0⟩3

H

H

X

X

Tα

H

H

H

H

H

H

H

H

X+
π
2

X+
π
2

X+
π
2

X+
π
2

Xπ
2

Xπ
2

Xπ
2

Xπ
2

Z+
α
2

Z+
α
2

Z+
α
2

Z+
α
2

Z+
α
2

Z+
α
2

Tβ

Tβ

Z+
α
2

Z+
α
2

Z+
α
2

Z+
α
2

Tβ

Tβ

Repulsion Hopping

Interacting ground state preparation

Perturbation Measurement

1. Prepare ground state

2. Bring it out of equilibrium

3. Let it evolve

4. Measure  expectation value⟨ZZ⟩

⟨{x3(τ)x3(0)}⟩

⟨{xiσ(τ)yjσ′ }⟩ =
⟨ixiσxd⟩Φjσ′ (τ, ϵd) − ⟨ixiσxd⟩Φjσ′ (τ, − ϵd)

2Φjσ′ sin(ϵdτ)

15.12.2023
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Error mitigation 
• Readout error mitigation 
• Pauli twirling 
• Dynamical decoupling 
• Zero noise extrapolation

4. Results 
Energy landscape 

on ibmq_kolkata 
noisy simulator

Correlators on 
ibmq_kolkata noisy 

simulator

15.12.2023
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USING ALL DEGREES OF FREEDOM
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Resonators are easy to add to superconducting procesors

Add extra resonators … coherent, easy to make, high-dimensional: 
What can they do?

Resonator-zero-qubit architecture for superconducting qubits

Andrei Galiautdinov,1 Alexander N. Korotkov,1 and John M. Martinis2
1Department of Electrical Engineering, University of California, Riverside, California 92521, USA

2Department of Physics, University of California, Santa Barbara, California 93106, USA
(Dated: August 30, 2021)

We analyze the performance of the Resonator/zero-Qubit (RezQu) architecture in which the
qubits are complemented with memory resonators and coupled via a resonator bus. Separating
the stored information from the rest of the processing circuit by at least two coupling steps and
the zero qubit state results in a significant increase of the ON/OFF ratio and the reduction of the
idling error. Assuming no decoherence, we calculate such idling error, as well as the errors for the
MOVE operation and tunneling measurement, and show that the RezQu architecture can provide
high fidelity performance required for medium-scale quantum information processing.

PACS numbers: 03.67.Lx, 85.25.-j

I. INTRODUCTION

Superconducting circuits with Josephson junctions are
steadily gaining attention as promising candidates for the
realization of a quantum computer [1]. Over the last sev-
eral years, significant progress has been made in prepar-
ing, controlling, and measuring the macroscopic quantum
states of such circuits [2–12]. However, the two major
roadblocks – scalability and decoherence – still remain,
impeding the development of a workable prototype. The
Resonator/zero-Qubit (RezQu) protocol presented here
aims to address these limitations at a low-level (hard-
ware cell) architecture [13].
A RezQu device consists of a set of superconducting

qubits (e.g., phase qubits [14]), each of which is capaci-
tively coupled to its own memory resonator and also ca-
pacitively coupled to a common resonator bus, as shown
in Fig. 1 [7, 15–17]. The bus is used for coupling oper-
ations between qubits, while the memory resonators are
used for information storage when the logic qubits are
idling. With coupling capacitors being fixed and rela-
tively small, qubit coupling is adjusted by varying the
qubit frequency, which is brought in and out of reso-
nance with the two resonators. For a one-qubit opera-
tion, quantum information is moved from the memory to
the qubit, where a microwave pulse is applied. A natural
two-qubit operation is the controlled-Z gate, for which
one qubit state is moved to the bus, while the other qubit
frequency is tuned close to resonance with the bus for a
precise duration [6, 18–20].
Most importantly, the information stored in resonators

is separated from the rest of the processing circuit by the
known qubit state |0i and at least two coupling steps,
thus reducing crosstalk error during idling. Also, the
problem of spectral crowding is essentially eliminated be-
cause the two-step resonance between empty qubits is
not harmful, while the four-step coupling between mem-
ory resonators is negligible. Therefore the resonator fre-
quencies, which are set by fabrication, can be close to
each other, decreasing sensitivity to phase errors in the
clock. Thus the RezQu architecture essentially solves the
inherent ON/OFF ratio problem of the fixed capacitive

FIG. 1: Schematic diagram of the RezQu architecture: m –
memory resonators, q – qubits, b – bus. We assume frequen-
cies ⇠7 GHz for the memories, ⇠6 GHz for the bus, and qubit
frequencies are varied between these values.

coupling without using a more complicated scheme of a
tunable coupling [8, 21, 22]. As an additional benefit, in-
formation storage in resonators increases coherence time
compared to storage in the qubits. We note that the
idea of using resonators to couple qubits has been sug-
gested by many authors [23–32]. The use of resonators
as quantum memories has also been previously proposed
[31, 33–35]. However, putting the two ideas together in a
single architecture results in the new qualitative advan-
tages, which have not been discussed.

In this paper we briefly consider the relation between
the logical and the physical qubit states and then ana-
lyze several basic operations in the RezQu architecture.
In particular, for a truncated three-component memory-
qubit-bus RezQu device we focus on the idling error, in-
formation transfer (MOVE) between the qubit and its
memory, and the tunneling measurement. The analysis
of the controlled-Z gate will be presented elsewhere [36].
For simplicity decoherence is neglected.
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Martinis Group 2012 (!) Current plan at FZJ
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5. Summary

0 2 4 6 8

-1

-0.5

0

0.5

1

t′ 

t′ 

U′ 

w

U′ 

U′ 

U′ 

MB GF q0

|1⟩d

⋯

qNc−1

qiσ

⋯

Sjσ′ , Nc

H

H Zθ

H

H

S†
jσ′ , Nc

Ut

Z+
tϵd

Siσ, Nc

H

Xπ
2

qjσ′ 

Electronic 
correlation captured 
in Fermi-Hubbard 

model

Solve FH by means 
of  many-body 

Green’s function, 
build from single-
particle Green’s 

function

Directly measure 
the correlators 

within the Green’s 
function

Apply error 
mitigation to 

results

Extrapolate 
to larger 

system sizes 
via VCA

15.12.2023



PHONONIC MODELS

37

Hubbard Holstein and friends

Unary Binary

Complexity 

for    N  levels  N qubits  Log N     qubits

Number of qubits 
required High Low

CNOT overhead Low High

Qubit encodings



A GATE ON THE MODE

38

ĤJC = ωr ̂a† ̂a −
1
2

ωq ̂σ z + g ( ̂σ+ ̂a + ̂σ− ̂a†) ωq = ωr

SJC(θ) = e−iθ( ̂σ+ ̂a + ̂σ− ̂a†)

Jaynes-Cummings Hamiltonian:

SJC(θ) = e−iθ( ̂σ+ ̂a + ̂σ− ̂a†)



Coupling Terms: Hubbard Holstein 
ĤHH = ∑

i,σ

g ( ̂c†
i,σ ̂ci,σ) ( ̂a† + ̂a)

39

SJC(θ) = e−iθ( ̂σ+ ̂a + ̂σ− ̂a†)

e−iĤHHτ



Coupling Terms (2): generalised hopping

40

ĤXY = g ∑
i≠j,σ

( ̂c†
i,σ ̂cj,σ) ( ̂a† + ̂a )

e−iĤXYτ
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The Variational Hamiltonian Ansatz

𝖠(θ) = D̂ (ϕ)
N−1

∏
i,σ

𝖸𝖸i,σ(vi,σ)𝖷𝖷i,σ(vi,σ)Ûi,σ;i+1,σ
Θ (γi,σ)

×
N

∏
i=1

𝖹𝖹i(ui)∏
σ

Ûi,σ
Θ (ζi,σ)Rz(2ϵi,σ)

°15

°10

°5

0

E
0
/V

Exact

Mean-field

VQE

0.90

0.95

1.00

F
id

el
it
y

0.0 0.5 1.0 1.5 2.0 2.5
g/V

0

1

2

|hâ
0
i|

D̂(α) = eα ̂a†−α* ̂a

Displacement operator



SUPERRADIANCE WITH INTERACTIONS

42

Ising Dicke model



tfΩ = 14

normal state quench

measurement

Density matrix and Wigner functions after the quench

Approximation of the superradiant state via quench



• evolution operator for Ising-Dicke Hamiltonian

Quantum circuit

• Dicke Hamiltonian gate

• Rabi Hamiltonian gate

• Janes-Cummings gate

S̃JC(θ, t) = e−i
̂

h zte−iθ( ̂σ
+ ̂a+ ̂σ

− ̂a
†
)ei

̂
h zt, θ = τg

Simulation protocol for quench dynamicsQubit-boson architecture

• flux-tunable transmons (Q) and couplers (C), 
capacitively coupled to resonators (R)



Quantum gates

Quantum circuit



CONCLUSIONS

• Mean Field AOA - often a good proxy for QAOA 
• Green’s function measurement - physics inspired method to simulate manybody systems 
• If your experimental colleague gives you resonators … simulate Bosons
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