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Why do we need QEC?

- Superconducting qubits don’t work exactly the way
they should

- Each gate is slightly wrong
- Qubits get poked by (small) external forces
- Measurements sometimes lie

- The same is true for spin qubits, topological qubits,
photonic qubits, ...

- Any qubit made out of a real-life physical system will be
at least a little bit rubbish
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Why do we need QEC? 1BM Quantum

- Algorithms like Shor, Grover, etc assume that qubits are
perfect

- Run them with imperfect physical qubits, and you’ll get
nonsense out
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- Instead we need qubits that are flawless incarnations of
the idea of quantum information
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- Such ideal qubits are called logical qubits
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- We need to somehow make perfect logical qubits out of noisy physical qubits
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Why do we need QEC? 1BM Quantum

- QEC is how we do this!

- Typically, many physical qubits are needed per logical qubit
- Using QEC in algorithms is therefore a long-term goal

- As are the algorithms that require it

- In the near term, we’ll try to make do and mitigate
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In these lectures B
- We'll look at the ideas behind error correction (classical and quantum)
- We'll go through specific examples
- Repetition code
- Surface code
- We’ll see the most important techniques
- Syndrome measurements

- Decoding

- Logical operations
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What is Error Correction? IBM Quantum

- Before we explain quantum error correction, we
should think about the general idea

- A simple example: you are talking on the phone, and
need to answer a question with ‘yes’ or ‘no’.

- Two important things to consider:

- How likely is it that you will be misheard?

p = probability that ‘no’ sounds like ‘yes’, etc

- How much do you care about being misunderstood?

P, = maximum acceptable error probability
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What Is Error Correction?

- Usually p « P,, so we don’t need to worry.

- But what if we are being asked life-or-death
qguestions over a noisy line?

- How can we make sure we are understood?
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The Repetition Code

- We could repeat ourselves.
- With a lot of ‘n0’s, it’s obvious we mean ‘no’.

- Same for mostly ‘no’s with a few random ‘yes’s
thrown in.

- With this encoding of our message, it has become
tolerant to small faults
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The Repetition Code e e

- The receiver will need to decode the message.
- A sensible option is majority voting.

- A misunderstanding only happens when the majority of
copies are flipped

- For d repetitions
[d/2]

P = Z (:) p"(1—p)* "~ ((1 - p))[dm

n=0

- P decays exponentially with d

- With enough repetitions, we can make P as small as we like
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Encoding and Decoding

- This example contained all the basic features of
any protocol for quantum error correction.

- Input: Some information to protect.

- Encoding: Transform the information to make it
easier to protect.

- Errors: Random perturbations of the encoded
message.

- Decoding: Trying to deduce the input from the
perturbed message
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IBM Quantum

Computation

- The example we just considered was one of communication, with errors occurring during transmission.
- For computation, errors are introduced whenever we perform an operation.
- We need to correct errors as they are introduced.

- Can be done by constantly decoding and re-encoding

Noisy Operation

/ N\

Input—» \Encoding <«——— Decoding /——» Output
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IBM Quantum

Computation

- For example, here’s a single bit using the Repetition code
- The ‘noisy operation’ here is just doing nothing (with some errors)

- Here we don’t completely decode and re-encode, but just do it enough to find and fix the errors.

el / 110

/ \

0/1 —>\000 / 111« 001 / 110/ — 0/1
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Quantum Computation

- This method works great for bits, but not for qubits

- Suppose we wanted to encode some superposition state
a|0) + b|1) - a|000) + b|111)

- Decoding requires measurement, and that destroys the superposition.

- To protect against one bad thing, we caused another!
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IBM Quantum

Quantum Computation

- To solve this, we need to be more careful with our measurements.

- We do need to measure, to get information about errors. But we must avoid learning
about the encoded information

- For this, note that we don’t actually need the bit values. We only need to know which
ones have a different value to the rest.

©O000O00000O0O0 11111111111

01110000100 10001111011

01 1 1#0 0 0 0=#1#0 O 120 0 0#1 1 1 1#0#1 1

14

IBM Quantum / © 2020 IBM Corporation



IBM Quantum

Quantum Repetition Code

- Can be done with some extra qubits: one for each pair of code qubits.

- They are are initialized in state |0), and are used as the target for two CX gates
- The net effect is to measure the observable Z;Z;, ;: the Z basis parity of the two qubits

- In short: whether they are the same or different

cx [00) =[00)
cx [01) =[00)
cx [10) =[11)

cx [11) =[10)
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Quantum Repetition Code

- The parity measurements are repeated over the course of the computation

- The results are used to identify where errors likely occurred and how to remove their effects
- This is done by means of a classical algorithm: a decoding algorithm

- With this we can protect against bit flip errors
for an arbitrarily long time
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Syndrome Measurement

- This measurement is a syndrome measurement
- The result is known as the syndrome
- All codes have them

- They are ways to check that all the qubits
are doing what they should be

- Their form changes from code to code,
but their job is always the same

- They provide the clues that allow us
to detect and correct errors
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Decoding IBM Quantum

- Start with an unrealistically simple case: errors between parity measurements only (not during)
- Focus on identifying errors for now (not correcting)
- Look for changes between rounds

- Errors create pairs of ‘defects’. Majority voting can be used to find a minimal pairing.

IBM Quantum / © 2020 IBM Corporation 18



Decoding IBM Quantum

- Next, a simple model of noise in the measurements: they randomly lie
- Again, look for changes between rounds
- Bit flips create defects with space-like separation, measurement errors with time-like

- Pairing is now a 2D problem, majority voting won’t work
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Decoding IBM Quantum

- There are many ways to do this, all with pros and cons
- One of the best is to think of the problem as a graph
- Defects are nodes
- The number of errors required to link them are weighted edges
- A likely set of errors corresponds to the ‘minimum weight perfect matching’ of the graph

- Efficiently computable using the ‘Blossom’ algorithm
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Decoding IBM Quantum

- Here it is in action for a portion of the example from earlier
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Logical Operations

IBM Quantum

- If we wanted to manipulate the logical qubit, how could we do it?

- This requires a logical operation, made up of many
physical operations

- The logical X gate is easy for the repetition code
- Do physical X gates on code qubits
- Code corrects imperfections

- An Rx gate essentially needs you to take the
code apart and put it back together again

- Not protected while unencoded

IBM Quantum / © 2020 IBM Corporation
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Quantum Repetition Code

- The limited set of fault-tolerant logical gates is a major
problem with the repetition code

- But it is not the only one!

- The code only allows us to detect and correct bit fips, and
only bit flips

- Though we made sure that it doesn’t cause superpositions
to collapse, it doesn’t protect them either

- The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation

IBM Quantum / © 2020 IBM Corporation
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Towards a good quantum code NI BRET

- The problem with the repetition code is that it treats z basis states very different to x and y basis states

- Example 1: z basis states are product states, the others are entangled

10) - [000)
1 1
I+>=7§(|0)+I1>) - \/—5(|000>+I111>)

- Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis
states requires d

- Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

0) = 1) © XoX1X,|000) = |111)
[+) = =) = Z;=(1000) + [111)) = = (]000) — [111))

- It is not good when things are too easy, because they are easy for errors too!

IBM Quantum / © 2020 IBM Corporation 24



Introduction to the Surface Code

James R. Wootton
IBM Quantum

IBM Quantum




Logical Operations IBM Quantum

- If we wanted to manipulate the logical qubit, how could we do it?

- This requires a logical operation, made up of many
physical operations

- The logical X gate is easy for the repetition code
- Do physical X gates on code qubits
- Code corrects imperfections

- An Rx gate essentially needs you to take the
code apart and put it back together again

- Not protected while unencoded R (29)|0> — e 9|0> el 9|1>
X =

— cos 0 |000) + sinf|111)
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Quantum Repetition Code

- The limited set of fault-tolerant logical gates is a major
problem with the repetition code

- But it is not the only one!

- The code only allows us to detect and correct bit fips, and
only bit flips

- Though we made sure that it doesn’t cause superpositions
to collapse, it doesn’t protect them either

- The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation
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Towards a good quantum code NI BRET

- The problem with the repetition code is that it treats z basis states very different to x and y basis states

- Example 1: z basis states are product states, the others are entangled

10) - [000)
1 1
I+>=7§(|0)+I1>) - \/—5(|000>+I111>)

- Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis
states requires d

- Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

0) = 1) © XoX1X,|000) = |111)
[+) = =) = Z;=(1000) + [111)) = = (]000) — [111))

- It is not good when things are too easy, because they are easy for errors too!
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The Surtace Code 1BM Quantum

- Quantum error correcting codes are defined by the measurements we make
- Let’s move beyond the simple Z;Z;. ; of the repetition code

- In the surface code we use a 2D lattice of code qubits, and define observables for plaquettes and vertices
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Plaquette Syndrome BM Quantum

- First let’s focus on the plaguette syndrome
- These are similar to the two qubit measurements in the repetition code
- Instead we measure the parity around plaquettes in the lattice

- Can again be done with CX gates and an extra qubit

IBM Quantum / © 2020 IBM Corporation 6



Plaquette Syndrome BM Quantum

- We can define a classical code (storing only a bit) based on the plaquette syndrome alone

- Valid states are those with trivial outcome for all plaquette syndrome measurements:
Even parity on all plaquettes

- How to store a 0 in this?

- How about the state where every code qubit is |0)?
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Plaquette Syndrome {EV R

- There are ‘nearby’ states that also have even parity on all plaquettes
- These can’t be a different encoded state: they are only a few bit flips away from our encoded 0 state

- We’'ll treat them as alternative ways to storea 0
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Plaquette Syndrome BM Quantum

- Given any state for an encoded 0
- Pick a vertex
- Apply bit flips around that vertex
- Now you have another valid state for 0

- This generates an exponentially large family
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Plaguette Syndrome AR

- The states in this family can be very different
- But they all share a common feature

- Any line from top to bottom (passing along edges) has even parity
- This is how we can identify an encoded 0

- And it gives us a clue about how to encode a 1l
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Plaquette Syndrome BM Quantum

- For our basic encoded 1, we use a bunch of Os with a line from left to right (passing through plaquettes)

- This also spawns an exponentially large family
- All have odd parity for a line from top to bottom

- Unlike the repetition code, distinguishing encoded 0 and 1 requires some effort (which is good!)
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Logical X and Z IBM Quantum

- Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

- The following observables detect what we need

- Or the same on any line from top to bottom

- Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes
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Logical X and Z IBM Quantum

- To flip between 0 and 1, we can flip a line of qubits

- Such lines of flips act as an X on the logical qubit
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Effects of Errors IBM Quantum

- Applying an X to any code qubit changes
the parity of its two plaquettes

- An isolated X creates a pair of defects

- Further Xs can be move a defect, or
annihilate pairs of them

- A logical X requires many errors to stretch
across the lattice

- With the plaquette operators, we can
encode and protect a bit

IBM Quantum / © 2020 IBM Corporation 16



Vertex Syndrome

- Now forget the plaquettes and focus on vertices
- These observables can also be measured using CX gates an an ancilla

- In this case they look at the |[+) and |—) states, and count the parity of the
number of |—)s

IBM Quantum
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Vertex Syndrome

- These operators also allow is to encode and protect a bit value
- In this case, let’s use + and - to label the two states

- They are encoded using suitable patterns of |+) and |—) states
for the code qubits

- As with the plaquettes, these also correspond to exponentially
large families of states

IBM Quantum / © 2020 IBM Corporation
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Logical X and Z IBM Quantum

- What is the X operator (distinguish between |+) and |—) )?
- What is the Z operator (flip between |+) and |—) )?

- Turns out they are exactly the same as before!
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Effects of Errors IBM Quantum

- Applying a Z to any code qubit changes the X
parity of its two vertices

- Anisolated Z creates a pair of defects

- Further Zs can be move a defect, or annihilate
pairs of them

- A logical Z requires many errors to stretch across
the lattice

- With the vertex operators, we can encode and
protect a bit
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Putting it all Together IBM Quantum

- The plaquette and vertex operators commute
- This allows us to detect both X and Z errors

- Since Y~XZ, we can detect Y errors too

IBM Quantum / © 2020 IBM Corporation 21



Putting it all Together IBM Quantum

- Encoded states now unique: superposition of all previous solutions

- For example, the encoded 0

® ®
02050008
!

BERS

- Satisfies A, |Y)= |Y) and B, |Y)= |), so will give the 0 outcome for all stabilizer measurements
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Putting it all Together IBM Quantum

- The Z and X operators on the encoded qubit are exactly the same as before

- These, and the Hadamard, can be performed fault-tolerantly
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Putting it all Together IBM Quantum

- The states we need are highly entangled quantum states

- They are examples of topologically ordered states

- Though such things can be hard to make, we create and protect them with the syndrome measurements
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Putting it all Together IBM Quantum

- We are not just protected against X and Z, but all local errors
- As mentioned earlier, Y~XZ

- Everything else can be expressed

E=al+bX+cY+dZ

- This creates a superposition of different types of error on the surface code

- Measuring the stabilizers collapses this to a simple X, Y or Z
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Final Readout TES QLA ULT

- The logical operators are many-body observables

- So how do we read them out fault-tolerantly

- When you decide on a basis for final measurement,
you stop caring about some errors

- You can then measurement in a product basis

- Final readout and final stabilizer measurement can
be constructed from the result

- Measurement errors are effectively the same as
errors before measurement
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Decoding IBM Quantum

- Given the measurement results, we need to work out what errors happened
- More specifically, the ‘equivalence class’ of errors

- This is the job of the decoding algorithm
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Decoding with MWPM IBM Quantum

- A good option is MWPM

- Just as we considered for the repetition code

- Again we start with the simple and unrealistic case: errors only
between measurement

- Each round can be decoded separately, corresponding to MWPM on
a 2D graph

- Decoding for X and Z errors can also be done independently

IBM Quantum / © 2020 IBM Corporation 28



Decoding IBM Quantum

- We need to be careful to account for the effects of the edges

- This is done by introducing extra ‘virtual nodes’
(also required for the repetition code, but we ignored it earlier)




Impertect Measurements

- Again, we have the problem of imperfect measurements
- The measurements might lie
- Errors on the additional qubit
- Errors in the CX gates

- We base the decoding using syndrome changes

— This leads to a 3D MWPM problem (2D space + time)

IBM Quantum / © 2020 IBM Corporation
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Threshold 1BM Quantum

- Correcting according to the right class removes the effects of errors
- Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)
- What is the probability of such an error, P, given the probability on the qubits of the code, p?

- We find a phase transition as L is increased (for an LxL grid)

D Pcty>P ), POk

\
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More Logical Gates AU

- We’ve seen how to do logical X and Z
- A logical CX can be done without much trouble

- A logical H requires the lattice to be rotated, but that
can be done

- Other logical Clifford gates can be done with some
crazy tricks

- But that’s all! No other logical operations can be done
fault-tolerantly.

- A solution is magic state distillation, using the logical
gates we have to clean up the one we don’t

- But that’s beyond today’s lecture...
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Anyons in the Surtrace Code

- There are many variants on how qubits can be encoded
and manipulated in the surface code

- They all depend on the unique topological nature

- The ‘defects’ created by errors in the surface code
behave like particles

- All particles in our universe are either bosons or
fermions

- This due to topological restrictions in a 3D universe

IBM Quantum / © 2020 IBM Corporation
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Anyons In the Surface Code IBM Quantum

- The surface code is only a 2D ‘universe’, so doesn’t have these restrictions

- How do these particles behave?
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Anyons in the Surtrace Code

- Braiding a particle corresponds to applying a stabilizer
- Their eigenstates defines the braiding phase

- Neither bosons nor fermions, but anyons!

IBM Quantum
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IBM Quantum

Why we like the surface code

- Each qubit is involved in only a finite number of syndrome measurements
- Each syndrome measurement requires only a finite number of qubits

- Qubits can be restricted to a 2D lattice with nearest neighbour entangling gates
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Why we don’t like the surface code

- We refer to codes using the parameters [[n,k,d]]
- n: the number of physical qubits
- k: the number of logical qubits
- d: the code distance

- For a surface code

n~d?, k=1, d=d

- Logical qubits made with the surface code are very expensive

R = lim == 0, d~nt/?

- Can we find codes with better scaling, while keeping the nice features?

IBM Quantum / © 2023 IBM Corporation

IBM Quantum



LDPC codes LEh D

- "Low density parity check” codes are classical EC codes for which
- Each bit is involved in only a finite number of checks

- Each check involves only a finite number of bits
- gLDPC codes are the same, but quantum

- Good qLDPC codes are those with good sets of parameters, such as

R=lim%=001), d~n

n-oon

- But how much do they deviate from a 2D lattice?
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gLDPC codes IBM Quantum

- We know a few bounds for purely 2D layouts, e.g.

-kd? <sn [Bravyi, Poulin, Terhal 2010]

- At least f—ld interactions of range are required [Baspin, Krishna 2022]

k
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Hierarchical memories: Simulating quantum LDPC codes with local
gates
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but P decays only superpolynomially J—

Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing
efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality
constraints, it becomes challenging to realize these codes. In this paper, we construct a new family
of [N, K, D] codes, r ed to as hierarchical codes, that encode a number of logical qubits K =
Q(N/ log(N)z). The N** element H y of this code family is obtained by concatenating a constant-rate
quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to
implement the syndrome-extraction circuit C§ and achieve a threshold. Below threshold the logical
failure rate vanishes superpolynomially as a functlon of the distance D(N). We present a bilayer
architecture for implementing cfé‘ and estimate the logical failure rate for this architecture. Under
conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all
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gLDPC codes at IBM IBM Quantum

- At IBM we want codes with
- High distance and encoding rate
- A high threshold (or pseudothreshold) for circuit noise
- Superconducting qubit implementation

- A short-depth syndrome extraction circuit
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gLDPC codes at IBM IBM Quantum

- Answer comes from ”bivariant bicycle codes”

- Variant of quasi-cyclic codes [Kovalev, Pryadko 2013]

Net Encoding
Rate r

[212.0]
[00.5.10]
[108.5.10]
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Compare to [[2028,12,13]] surface code: r = 1/169
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gLDPC codes at IBM IBM Quantum

- Matches surface code performance, but with 10x fewer qubits!
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Bilayer representation {EV R

~First: Tanner graphs
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Bilayer representation {EV R

-If planar graphs aren’t good enough, we go for thickness-2

-Union of two planar graphs

Planar graph of wires /‘\
Qubits —¢ @ K 2 W a % @ X o ¥ o u s e

Planar graph of wires /



Bilayer representation {EV R

-Tanner graph for these codes

"Grid Representation”
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Bilayer representation {EV R

-Visual proof of thickness-2

Edges A3, Ag, and B3 Edges By, Bg, and Aj
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Bilayer representation 18M Quantum
-Tanner graph of [[114,12,12]]

Tanner Graph of the [[144,12,12]] Quasi-Cyclic Code

B =[X] check B =[Z] check ‘A’ edge
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Syndrome measurement circuit IBM Quantum

Pseudo-thresholds around 0.8%



Conclusions IBM Quantum

-gLDPC codes that outperform the surface code
-Better rate
-Same error suppression
-Similar pseudo-threshold

-The cost is a more complex Tanner graph

-But bilayer architecture is something we can achieve!

Bravyi et al., arXiv:2308.07915 (2023)
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