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Why do we need QEC?
– Superconducting qubits don’t work exactly the way 

they should

• Each gate is slightly wrong

• Qubits get poked by (small) external forces

• Measurements sometimes lie

– The same is true for spin qubits, topological qubits, 
photonic qubits, …
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– Any qubit made out of a real-life physical system will be 
at least a little bit rubbish



Why do we need QEC?
– Algorithms like Shor, Grover, etc assume that qubits are 

perfect

– Run them with imperfect physical qubits, and you’ll get 
nonsense out

– Instead we need qubits that are flawless incarnations of 
the idea of quantum information

– Such ideal qubits are called logical qubits
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– We need to somehow make perfect logical qubits out of noisy physical qubits



Why do we need QEC?
– QEC is how we do this!

– Typically, many physical qubits are needed per logical qubit

– Using QEC in algorithms is therefore a long-term goal

– As are the algorithms that require it

– In the near term, we’ll try to make do and mitigate
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In these lectures
– We’ll look at the ideas behind error correction (classical and quantum)

– We’ll go through specific examples

• Repetition code

• Surface code

– We’ll see the most important techniques

• Syndrome measurements

• Decoding

• Logical operations
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What is Error Correction?

– Before we explain quantum error correction, we 
should think about the general idea

– A simple example: you are talking on the phone, and 
need to answer a question with ‘yes’ or ‘no’.

– Two important things to consider:

• How likely is it that you will be misheard?

  p = probability that ‘no’ sounds like ‘yes’, etc

• How much do you care about being misunderstood?

  Pa = maximum acceptable error probability
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What is Error Correction?

– Usually !	 ≪ $!, so we don’t need to worry.

– But what if we are  being asked life-or-death 
questions over a noisy line?

– How can we make sure we are understood?
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The Repetition Code

– We could repeat ourselves.

– With a lot of ‘no’s, it’s obvious we mean ‘no’.

– Same for mostly ‘no’s with a few random ‘yes’s 
thrown in.

– With this encoding of our message, it has become 
tolerant to small faults
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The Repetition Code

– The receiver will need to decode the message.

– A sensible option is majority voting.

– A misunderstanding only happens when the majority of 
copies are flipped

– For d repetitions

$ = 	 &
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%/' '
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– P decays exponentially with d

– With enough repetitions, we can make P as small as we like
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Encoding and Decoding

– This example contained all the basic features of 
any protocol for quantum error correction.

• Input: Some information to protect.

• Encoding: Transform the information to make it 
easier to protect.

• Errors: Random perturbations of the encoded 
message.

• Decoding: Trying to deduce the input from the 
perturbed message
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Computation

– The example we just considered was one of communication, with errors occurring during transmission.

– For computation, errors are introduced whenever we perform an operation.

– We need to correct errors as they are introduced.

– Can be done by constantly decoding and re-encoding
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Computation

– For example, here’s a single bit using the Repetition code

– The ‘noisy operation’ here is just doing nothing (with some errors)

– Here we don’t completely decode and re-encode, but just do it enough to find and fix the errors.
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Quantum Computation
– This method works great for bits, but not for qubits

– Suppose we wanted to encode some superposition state
. ⟩0 + 2 ⟩1 → . ⟩000 + 2 ⟩111

– Decoding requires measurement, and that destroys the superposition.

– To protect against one bad thing, we caused another!
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Quantum Computation

– To solve this, we need to be more careful with our measurements.

– We do need to measure, to get information about errors. But we must avoid learning 
about the encoded information

– For this, note that we don’t actually need the bit values. We only need to know which 
ones have a different value to the rest.
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Quantum Repetition Code
– Can be done with some extra qubits: one for each pair of code qubits.

– They are are initialized in state ⟩|0 , and are used as the target for two CX gates

– The net effect is to measure the observable 5)5)*+: the Z basis parity of the two qubits

– In short: whether they are the same or different
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cx ⟩00 = ⟩00
cx ⟩01 = ⟩00
cx ⟩10 = ⟩11
cx ⟩11 = ⟩10



Quantum Repetition Code
– The parity measurements are repeated over the course of the computation

– The results are used to identify where errors likely occurred and how to remove their effects

– This is done by means of a classical algorithm: a decoding algorithm

– With this we can protect against bit flip errors
for an arbitrarily long time
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Syndrome Measurement

– This measurement is a syndrome measurement

– The result is known as the syndrome

– All codes have them

– They are ways to check that all the qubits
are doing what they should be

– Their form changes from code to code,
but their job is always the same

– They provide the clues that allow us
to detect and correct errors
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Decoding
– Start with an unrealistically simple case: errors between parity measurements only (not during)

– Focus  on identifying errors for now (not correcting)

– Look for changes between rounds

– Errors create pairs of ‘defects’. Majority voting can be  used to  find a minimal pairing.
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Decoding
– Next, a simple model of noise in the measurements: they randomly lie

– Again, look for changes between rounds

– Bit flips create defects with space-like separation, measurement errors with time-like

– Pairing is now a 2D problem, majority voting won’t work
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Decoding
– There are many ways to do this, all with pros and cons

– One of the best is to think of the problem as a graph

• Defects are nodes

• The number of errors required to link them are weighted edges

– A likely set of errors corresponds to the ‘minimum weight perfect matching’ of the graph

– Efficiently computable using the ‘Blossom’ algorithm

IBM Quantum / © 2020 IBM Corporation 20



Decoding

– Here it is in action for a portion of the example from earlier
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Logical Operations

– If we wanted to manipulate the logical qubit, how could we do it?

– This requires a logical operation, made up of many
physical operations

– The logical X gate is easy for the repetition code

• Do physical X gates on code qubits

• Code corrects imperfections

– An Rx gate essentially needs you to take the
code apart and put it back together again

• Not protected while unencoded
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!! 2# ⟩0 = cos # ⟩0 + sin #| ⟩1 	

	 → 	 cos # | ⟩000 + sin #| ⟩111 	



Quantum Repetition Code

– The limited set of fault-tolerant logical gates is a major 
problem with the repetition code

– But it is not the only one!

– The code only allows us to detect and correct bit fips, and 
only bit flips

– Though we made sure that it doesn’t cause superpositions 
to collapse, it doesn’t protect them either
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– The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation



Towards a good quantum code
– The problem with the repetition code is that it treats z basis states very different to x and y basis states

– Example 1: z basis states are product states, the others are entangled

– Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis 
states requires d

– Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

– It is not good when things are too easy, because they are easy for errors too!

IBM Quantum / © 2020 IBM Corporation 24

| ⟩0 	 →	 | ⟩000
	 | ⟩+ = 1

2(| ⟩0 + ⟩1 	 →	 1
2 (| ⟩000 + | ⟩111 )
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Logical Operations

– If we wanted to manipulate the logical qubit, how could we do it?

– This requires a logical operation, made up of many
physical operations

– The logical X gate is easy for the repetition code

• Do physical X gates on code qubits

• Code corrects imperfections

– An Rx gate essentially needs you to take the
code apart and put it back together again

• Not protected while unencoded
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Quantum Repetition Code

– The limited set of fault-tolerant logical gates is a major 
problem with the repetition code

– But it is not the only one!

– The code only allows us to detect and correct bit fips, and 
only bit flips

– Though we made sure that it doesn’t cause superpositions 
to collapse, it doesn’t protect them either
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– The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation



Towards a good quantum code
– The problem with the repetition code is that it treats z basis states very different to x and y basis states

– Example 1: z basis states are product states, the others are entangled

– Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis 
states requires d

– Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

– It is not good when things are too easy, because they are easy for errors too!
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The Surface Code
– Quantum error correcting codes are defined by the measurements we make

– Let’s move beyond the simple /$/$%" of the repetition code

– In the surface code we use a 2D lattice of code qubits, and define observables for plaquettes and vertices
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Plaquette Syndrome
– First let’s focus on the plaquette syndrome

– These are similar to the two qubit measurements in the repetition code

– Instead we measure the parity around plaquettes in the lattice

– Can again be done with CX gates and an extra qubit
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Plaquette Syndrome
– We can define a classical code (storing only a bit) based on the plaquette syndrome alone

– Valid states are those with trivial outcome for all plaquette syndrome measurements:
 Even parity on all plaquettes

– How to store a 0 in this?

– How about the state where every code qubit is | ⟩0 ?

 

IBM Quantum / © 2020 IBM Corporation 7



Plaquette Syndrome
– There are ‘nearby’ states that also have even parity on all plaquettes

– These can’t be a different encoded state: they are only a few bit flips away from our encoded 0 state

– We’ll treat them as alternative ways to store a 0
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Plaquette Syndrome
– Given any state for an encoded 0

• Pick a vertex

• Apply bit flips around that vertex

– Now you have another valid state for 0

– This generates an exponentially large family
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Plaquette Syndrome
– The states in this family can be very different

– But they all share a common feature

• Any line from top to bottom (passing along edges) has even parity

– This is how we can identify an encoded 0

– And it gives us a clue about how to encode a 1
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Plaquette Syndrome
– For our basic encoded 1, we use a bunch of 0s with a line from left to right (passing through plaquettes)

– This also spawns an exponentially large family

– All have odd parity for a line from top to bottom

– Unlike the repetition code, distinguishing encoded 0 and 1 requires some effort (which is good!)
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Logical X and Z
– Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

– The following observables detect what we need

– Or the same on any line from top to bottom

– Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes

 
IBM Quantum / © 2020 IBM Corporation 14



Logical X and Z
– To flip between 0 and 1, we can flip a line of qubits

– Such lines of flips act as an X on the logical qubit
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Effects of Errors
– Applying an X to any code qubit changes 

the parity of its two plaquettes

– An isolated X creates a pair of defects

– Further Xs can be move a defect, or 
annihilate pairs of them

– A logical X requires many errors to stretch 
across the lattice

– With the plaquette operators, we can 
encode and protect a bit
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Vertex Syndrome
– Now forget the plaquettes and focus on vertices

– These observables can also be measured using CX gates an an ancilla

– In this case they look at the | ⟩+  and | ⟩−  states, and count the parity of the 
number of | ⟩− s
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Vertex Syndrome

– These operators also allow is to encode and protect a bit value

– In this case, let’s use + and - to label the two states

– They are encoded using suitable patterns of | ⟩+  and | ⟩−  states 
for the code qubits

– As with the plaquettes, these also correspond to exponentially 
large families of states
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Logical X and Z
– What is the X operator (distinguish between | ⟩+  and | ⟩−  )?

– What is the Z operator (flip between | ⟩+  and | ⟩−  )?

– Turns out they are exactly the same as before!
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Effects of Errors
– Applying a Z to any code qubit changes the X 

parity of its two vertices

– An isolated Z creates a pair of defects

– Further Zs can be move a defect, or annihilate 
pairs of them

– A logical Z requires many errors to stretch across 
the lattice

– With the vertex operators, we can encode and 
protect a bit
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Putting it all Together
– The plaquette and vertex operators commute

– This allows us to detect both X and Z errors

– Since Y~XZ, we can detect Y errors too
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Putting it all Together
– Encoded states now unique: superposition of all previous solutions

– For example, the encoded 0

– Satisfies 0&| ⟩1 ⟩= |1  and 2&| ⟩1 ⟩= |1 , so will give the 0 outcome for all stabilizer measurements
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Putting it all Together
– The Z and X operators on the encoded qubit are exactly the same as before

– These, and the Hadamard, can be performed fault-tolerantly
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Putting it all Together
– The states we need are highly entangled quantum states

– They are examples of topologically ordered states

– Though such things can be hard to make, we create and protect them with the syndrome measurements
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Putting it all Together
– We are not just protected against X and Z, but all local errors

– As mentioned earlier, Y~XZ

– Everything else can be expressed

! = #	% + '	( + )	* + +	,
– This creates a superposition of different types of error on the surface code

– Measuring the stabilizers collapses this to a simple X, Y or Z
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Final Readout
– The logical operators are many-body observables

– So how do we read them out fault-tolerantly

– When you decide on a basis for final measurement, 
you stop caring about some errors

– You can then measurement in a product basis

– Final readout and final stabilizer measurement can 
be constructed from the result

– Measurement errors are effectively the same as 
errors before measurement
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Decoding
– Given the measurement results, we need to work out what errors happened

– More specifically, the ‘equivalence class’ of errors

– This is the job of the decoding algorithm
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Decoding with MWPM
– A good option is MWPM

– Just as we considered for the repetition code

– Again we start with the simple and unrealistic case: errors only 
between measurement

– Each round can be decoded separately, corresponding to MWPM on 
a 2D graph

– Decoding for X and Z errors can also be done independently
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Decoding
– We need to be careful to account for the effects of the edges

– This is done by introducing extra ‘virtual nodes’
(also required for the repetition code, but we ignored it earlier) 
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Imperfect Measurements

–  Again, we have the problem of imperfect measurements

• The measurements might lie

• Errors on the additional qubit

• Errors in the CX gates

– We base the decoding using syndrome changes

– This leads to a 3D MWPM problem (2D space + time)
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Threshold
– Correcting according to the right class removes the effects of errors

– Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)

– What is the probability of such an error, P, given the probability on the qubits of the code, p?

– We find a phase transition as L is increased (for an LxL grid)
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More Logical Gates
– We’ve seen how to do logical X and Z

– A logical CX can be done without much trouble

– A logical H requires the lattice to be rotated, but that 
can be done

– Other logical Clifford gates can be done with some 
crazy tricks

– But that’s all! No other logical operations can be done 
fault-tolerantly.

– A solution is magic state distillation, using the logical 
gates we have to clean up the one we don’t

– But that’s beyond today’s lecture…
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Anyons in the Surface Code

– There are many variants on how qubits can be encoded 
and manipulated in the surface code

– They all depend on the unique topological nature

– The ‘defects’ created by errors in the surface code 
behave like particles

– All particles in our universe are either bosons or 
fermions

– This due to topological restrictions in a 3D universe
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Anyons in the Surface Code
– The surface code is only a 2D ‘universe’, so doesn’t have these restrictions

– How do these particles behave?
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Anyons in the Surface Code
–  Braiding a particle corresponds to applying a stabilizer

– Their eigenstates defines the braiding phase

– Neither bosons nor fermions, but anyons!
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Why we like the surface code
– Each qubit is involved in only a finite number of syndrome measurements

– Each syndrome measurement requires only a finite number of qubits

– Qubits can be restricted to a 2D lattice with nearest neighbour entangling gates
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Why we don’t like the surface code
– We refer to codes using the parameters [[n,k,d]]

• n: the number of physical qubits

• k: the number of logical qubits

• d: the code distance

– For a surface code

!~#!,        $ = 1,        # = #
– Logical qubits made with the surface code are very expensive

! = lim!→#
$
! = 0,        '~)%/'

– Can we find codes with better scaling, while keeping the nice features?
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LDPC codes
– ”Low density parity check”  codes are classical EC codes for which

• Each bit is involved in only a finite number of checks

• Each check involves only a finite number of bits

– qLDPC codes are the same, but quantum

– Good qLDPC codes are those with good sets of parameters, such as

' = lim"→$
%
" = +(1),        #~!

 

– But how much do they deviate from a 2D lattice?
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qLDPC codes
– We know a few bounds for purely 2D layouts, e.g.

• *'' ≲ )     [Bravyi, Poulin, Terhal 2010]

• At least $
!	' interactions of range $

(  are required  [Baspin, Krishna 2022]

– These can also be violated, at a price

• For example

 $	~ "
&'(!", #	~	!)/! 

but P decays only superpolynomially
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qLDPC codes at IBM

– At IBM we want codes with

• High distance and encoding rate

• A high threshold (or pseudothreshold) for circuit noise

• Superconducting qubit implementation

• A short-depth syndrome extraction circuit
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qLDPC codes at IBM

– Answer comes from ”bivariant bicycle codes”

• Variant of quasi-cyclic codes     [Kovalev, Pryadko 2013] 
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qLDPC codes at IBM
– Matches surface code performance, but with 10x fewer qubits!
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Bilayer representation

–First: Tanner graphs
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Bilayer representation

– If planar graphs aren’t good enough, we go for thickness-2

•Union of two planar graphs
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Bilayer representation

–Tanner graph for these codes
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Bilayer representation

–Visual proof of thickness-2
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Bilayer representation
–Tanner graph of [[114,12,12]]
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Syndrome measurement circuit
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Pseudo-thresholds around 0.8%



Conclusions
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Bravyi et al., arXiv:2308.07915 (2023)

–qLDPC codes that outperform the surface code

•Better rate

•Same error suppression

•Similar pseudo-threshold

–The cost is a more complex Tanner graph

•But bilayer architecture is something we can achieve!



Thanks for your attention
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