Introduction to Quantum Error Correction

James R. Wootton
IBM Quantum

IBM Quantum

Why do we need QEC?

- Superconducting qubits don’t work exactly the way
they should

- Each gate is slightly wrong
- Qubits get poked by (small) external forces
- Measurements sometimes lie

- The same is true for spin qubits, topological qubits,
photonic qubits, ...

- Any qubit made out of a real-life physical system will be
at least a little bit rubbish

IBM Quantum / © 2020 IBM Corporation

> 44 «—> 45

®

Single-qubit U2 error rate

5.270e-4

1.031e-2

IBM Quantum

29

> 48 e
@
CNOT error rate

2.082e-2 1.000e+0

Why do we need QEC? 1BM Quantum

- Algorithms like Shor, Grover, etc assume that qubits are
perfect

- Run them with imperfect physical qubits, and you’ll get
nonsense out

e
w

- Instead we need qubits that are flawless incarnations of
the idea of quantum information

o
(N

0n
Q@
=
Q
©
Q
o
ju
a

- Such ideal qubits are called logical qubits

0.027 0.024
0.011 0.019

- We need to somehow make perfect logical qubits out of noisy physical qubits

IBM Quantum / © 2020 IBM Corporation

Why do we need QEC? 1BM Quantum

- QEC is how we do this!

- Typically, many physical qubits are needed per logical qubit
- Using QEC in algorithms is therefore a long-term goal

- As are the algorithms that require it

- In the near term, we’ll try to make do and mitigate

IBM Quantum / © 2020 IBM Corporation 4

In these lectures B
- We'll look at the ideas behind error correction (classical and quantum)
- We'll go through specific examples
- Repetition code
- Surface code
- We’ll see the most important techniques
- Syndrome measurements

- Decoding

- Logical operations

IBM Quantum / © 2020 IBM Corporation

What is Error Correction? IBM Quantum

- Before we explain quantum error correction, we
should think about the general idea

- A simple example: you are talking on the phone, and
need to answer a question with ‘yes’ or ‘no’.

- Two important things to consider:

- How likely is it that you will be misheard?

p = probability that ‘no’ sounds like ‘yes’, etc

- How much do you care about being misunderstood?

P, = maximum acceptable error probability

IBM Quantum / © 2020 IBM Corporation 6

What Is Error Correction?

- Usually p « P,, so we don’t need to worry.

- But what if we are being asked life-or-death
qguestions over a noisy line?

- How can we make sure we are understood?

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

The Repetition Code

- We could repeat ourselves.
- With a lot of ‘n0’s, it’s obvious we mean ‘no’.

- Same for mostly ‘no’s with a few random ‘yes’s
thrown in.

- With this encoding of our message, it has become
tolerant to small faults

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

The Repetition Code e e

- The receiver will need to decode the message.
- A sensible option is majority voting.

- A misunderstanding only happens when the majority of
copies are flipped

- For d repetitions
[d/2]

P = Z (:) p"(1—p)* "~ ((1 - p))[dm

n=0

- P decays exponentially with d

- With enough repetitions, we can make P as small as we like

IBM Quantum / © 2020 IBM Corporation 9

Encoding and Decoding

- This example contained all the basic features of
any protocol for quantum error correction.

- Input: Some information to protect.

- Encoding: Transform the information to make it
easier to protect.

- Errors: Random perturbations of the encoded
message.

- Decoding: Trying to deduce the input from the
perturbed message

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

10

IBM Quantum

Computation

- The example we just considered was one of communication, with errors occurring during transmission.
- For computation, errors are introduced whenever we perform an operation.
- We need to correct errors as they are introduced.

- Can be done by constantly decoding and re-encoding

Noisy Operation

/ N\

Input—» \Encoding <«——— Decoding /——» Output

IBM Quantum / © 2020 IBM Corporation 11

IBM Quantum

Computation

- For example, here’s a single bit using the Repetition code
- The ‘noisy operation’ here is just doing nothing (with some errors)

- Here we don’t completely decode and re-encode, but just do it enough to find and fix the errors.

el / 110

/ \

0/1 —>\000 / 111« 001 / 110/ — 0/1

IBM Quantum / © 2020 IBM Corporation 12

Quantum Computation

- This method works great for bits, but not for qubits

- Suppose we wanted to encode some superposition state
a|0) + b|1) - a|000) + b|111)

- Decoding requires measurement, and that destroys the superposition.

- To protect against one bad thing, we caused another!

el / 110

/

0/1 —>\000 / 111« 001 / 110/ — 0/1

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

13

IBM Quantum

Quantum Computation

- To solve this, we need to be more careful with our measurements.

- We do need to measure, to get information about errors. But we must avoid learning
about the encoded information

- For this, note that we don’t actually need the bit values. We only need to know which
ones have a different value to the rest.

©O000O00000O0O0 11111111111

01110000100 10001111011

01 1 1#0 0 0 0=#1#0 O 120 0 0#1 1 1 1#0#1 1

14

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

Quantum Repetition Code

- Can be done with some extra qubits: one for each pair of code qubits.

- They are are initialized in state |0), and are used as the target for two CX gates
- The net effect is to measure the observable Z;Z;, ;: the Z basis parity of the two qubits

- In short: whether they are the same or different

cx [00) =[00)
cx [01) =[00)
cx [10) =[11)

cx [11) =[10)

IBM Quantum / © 2020 IBM Corporation

Quantum Repetition Code

- The parity measurements are repeated over the course of the computation

- The results are used to identify where errors likely occurred and how to remove their effects
- This is done by means of a classical algorithm: a decoding algorithm

- With this we can protect against bit flip errors
for an arbitrarily long time

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

16

Syndrome Measurement

- This measurement is a syndrome measurement
- The result is known as the syndrome
- All codes have them

- They are ways to check that all the qubits
are doing what they should be

- Their form changes from code to code,
but their job is always the same

- They provide the clues that allow us
to detect and correct errors

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

17

Decoding IBM Quantum

- Start with an unrealistically simple case: errors between parity measurements only (not during)
- Focus on identifying errors for now (not correcting)
- Look for changes between rounds

- Errors create pairs of ‘defects’. Majority voting can be used to find a minimal pairing.

IBM Quantum / © 2020 IBM Corporation 18

Decoding IBM Quantum

- Next, a simple model of noise in the measurements: they randomly lie
- Again, look for changes between rounds
- Bit flips create defects with space-like separation, measurement errors with time-like

- Pairing is now a 2D problem, majority voting won’t work

IBM Quantum / © 2020 IBM Corporation 19

Decoding IBM Quantum

- There are many ways to do this, all with pros and cons
- One of the best is to think of the problem as a graph
- Defects are nodes
- The number of errors required to link them are weighted edges
- A likely set of errors corresponds to the ‘minimum weight perfect matching’ of the graph

- Efficiently computable using the ‘Blossom’ algorithm

IBM Quantum / © 2020 IBM Corporation 20

Decoding IBM Quantum

- Here it is in action for a portion of the example from earlier

IBM Quantum / © 2020 IBM Corporation 21

Logical Operations

IBM Quantum

- If we wanted to manipulate the logical qubit, how could we do it?

- This requires a logical operation, made up of many
physical operations

- The logical X gate is easy for the repetition code
- Do physical X gates on code qubits
- Code corrects imperfections

- An Rx gate essentially needs you to take the
code apart and put it back together again

- Not protected while unencoded

IBM Quantum / © 2020 IBM Corporation

R, (26)]|0) = cos8]0) + sinf|1)

— cos 0 |000) + sinf|111)

22

Quantum Repetition Code

- The limited set of fault-tolerant logical gates is a major
problem with the repetition code

- But it is not the only one!

- The code only allows us to detect and correct bit fips, and
only bit flips

- Though we made sure that it doesn’t cause superpositions
to collapse, it doesn’t protect them either

- The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

23

Towards a good quantum code NI BRET

- The problem with the repetition code is that it treats z basis states very different to x and y basis states

- Example 1: z basis states are product states, the others are entangled

10) - [000)
1 1
I+>=7§(|0)+I1>) - \/—5(|000>+I111>)

- Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis
states requires d

- Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

0) = 1) © XoX1X,|000) = |111)
[+) = =) = Z;=(1000) + [111)) = = (]000) — [111))

- It is not good when things are too easy, because they are easy for errors too!

IBM Quantum / © 2020 IBM Corporation 24

Introduction to the Surface Code

James R. Wootton
IBM Quantum

IBM Quantum

Logical Operations IBM Quantum

- If we wanted to manipulate the logical qubit, how could we do it?

- This requires a logical operation, made up of many
physical operations

- The logical X gate is easy for the repetition code
- Do physical X gates on code qubits
- Code corrects imperfections

- An Rx gate essentially needs you to take the
code apart and put it back together again

- Not protected while unencoded R (29)|0> — e 9|0> el 9|1>
X =

— cos 0 |000) + sinf|111)

IBM Quantum / © 2020 IBM Corporation 2

IBM Quantum

Quantum Repetition Code

- The limited set of fault-tolerant logical gates is a major
problem with the repetition code

- But it is not the only one!

- The code only allows us to detect and correct bit fips, and
only bit flips

- Though we made sure that it doesn’t cause superpositions
to collapse, it doesn’t protect them either

- The repetition code is a good first example of quantum error correction,
but it cannot give us fault-tolerant quantum computation

IBM Quantum / © 2020 IBM Corporation

Towards a good quantum code NI BRET

- The problem with the repetition code is that it treats z basis states very different to x and y basis states

- Example 1: z basis states are product states, the others are entangled

10) - [000)
1 1
I+>=7§(|0)+I1>) - \/—5(|000>+I111>)

- Example 2: Distinguishing encoded z basis requires a single qubit measurement, distinguishing x basis
states requires d

- Example 3: Flipping between z basis states requires d gates, but the x basis only takes one

0) = 1) © XoX1X,|000) = |111)
[+) = =) = Z;=(1000) + [111)) = = (]000) — [111))

- It is not good when things are too easy, because they are easy for errors too!

IBM Quantum / © 2020 IBM Corporation 4

The Surtace Code 1BM Quantum

- Quantum error correcting codes are defined by the measurements we make
- Let’s move beyond the simple Z;Z;. ; of the repetition code

- In the surface code we use a 2D lattice of code qubits, and define observables for plaquettes and vertices

IBM Quantum / © 2020 IBM Corporation

Plaquette Syndrome BM Quantum

- First let’s focus on the plaguette syndrome
- These are similar to the two qubit measurements in the repetition code
- Instead we measure the parity around plaquettes in the lattice

- Can again be done with CX gates and an extra qubit

IBM Quantum / © 2020 IBM Corporation 6

Plaquette Syndrome BM Quantum

- We can define a classical code (storing only a bit) based on the plaquette syndrome alone

- Valid states are those with trivial outcome for all plaquette syndrome measurements:
Even parity on all plaquettes

- How to store a 0 in this?

- How about the state where every code qubit is |0)?

IBM Quantum / © 2020 IBM Corporation 7

Plaquette Syndrome {EV R

- There are ‘nearby’ states that also have even parity on all plaquettes
- These can’t be a different encoded state: they are only a few bit flips away from our encoded 0 state

- We’'ll treat them as alternative ways to storea 0

IBM Quantum / © 2020 IBM Corporation 10

Plaquette Syndrome BM Quantum

- Given any state for an encoded 0
- Pick a vertex
- Apply bit flips around that vertex
- Now you have another valid state for 0

- This generates an exponentially large family

IBM Quantu m / © 2020 IBM Corporation

Plaguette Syndrome AR

- The states in this family can be very different
- But they all share a common feature

- Any line from top to bottom (passing along edges) has even parity
- This is how we can identify an encoded 0

- And it gives us a clue about how to encode a 1l

IBM Quantu m / © 2020 IBM Corporation 12

Plaquette Syndrome BM Quantum

- For our basic encoded 1, we use a bunch of Os with a line from left to right (passing through plaquettes)

- This also spawns an exponentially large family
- All have odd parity for a line from top to bottom

- Unlike the repetition code, distinguishing encoded 0 and 1 requires some effort (which is good!)

IBM Quantum / © 2020 IBM Corporation 13

Logical X and Z IBM Quantum

- Distinguishing 0 and 1 corresponds to measuring Z on the physical qubit

- The following observables detect what we need

- Or the same on any line from top to bottom

- Uses the edges has a nice advantage: we can think of them as large (unenforced) plaquettes

IBM Quantum / © 2020 IBM Corporation 14

Logical X and Z IBM Quantum

- To flip between 0 and 1, we can flip a line of qubits

- Such lines of flips act as an X on the logical qubit

IBM Quantu m / © 2020 IBM Corporation

Effects of Errors IBM Quantum

- Applying an X to any code qubit changes
the parity of its two plaquettes

- An isolated X creates a pair of defects

- Further Xs can be move a defect, or
annihilate pairs of them

- A logical X requires many errors to stretch
across the lattice

- With the plaquette operators, we can
encode and protect a bit

IBM Quantum / © 2020 IBM Corporation 16

Vertex Syndrome

- Now forget the plaquettes and focus on vertices
- These observables can also be measured using CX gates an an ancilla

- In this case they look at the |[+) and |—) states, and count the parity of the
number of |—)s

IBM Quantum

IBM Quantum / © 2020 IBM Corporation

17

Vertex Syndrome

- These operators also allow is to encode and protect a bit value
- In this case, let’s use + and - to label the two states

- They are encoded using suitable patterns of |+) and |—) states
for the code qubits

- As with the plaquettes, these also correspond to exponentially
large families of states

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

18

Logical X and Z IBM Quantum

- What is the X operator (distinguish between |+) and |—))?
- What is the Z operator (flip between |+) and |—))?

- Turns out they are exactly the same as before!

IBM Quantum / © 2020 IBM Corporation 19

Effects of Errors IBM Quantum

- Applying a Z to any code qubit changes the X
parity of its two vertices

- Anisolated Z creates a pair of defects

- Further Zs can be move a defect, or annihilate
pairs of them

- A logical Z requires many errors to stretch across
the lattice

- With the vertex operators, we can encode and
protect a bit

IBM Quantum / © 2020 IBM Corporation 20

Putting it all Together IBM Quantum

- The plaquette and vertex operators commute
- This allows us to detect both X and Z errors

- Since Y~XZ, we can detect Y errors too

IBM Quantum / © 2020 IBM Corporation 21

Putting it all Together IBM Quantum

- Encoded states now unique: superposition of all previous solutions

- For example, the encoded 0

® ®
02050008
!

BERS

- Satisfies A, |Y)= |Y) and B, |Y)= |), so will give the 0 outcome for all stabilizer measurements

IBM Quantum / © 2020 IBM Corporation 22

Putting it all Together IBM Quantum

- The Z and X operators on the encoded qubit are exactly the same as before

- These, and the Hadamard, can be performed fault-tolerantly

IBM Quantum / © 2020 IBM Corporation 23

Putting it all Together IBM Quantum

- The states we need are highly entangled quantum states

- They are examples of topologically ordered states

- Though such things can be hard to make, we create and protect them with the syndrome measurements

IBM Quantum / © 2020 IBM Corporation 24

Putting it all Together IBM Quantum

- We are not just protected against X and Z, but all local errors
- As mentioned earlier, Y~XZ

- Everything else can be expressed

E=al+bX+cY+dZ

- This creates a superposition of different types of error on the surface code

- Measuring the stabilizers collapses this to a simple X, Y or Z

IBM Quantum / © 2020 IBM Corporation 25

Final Readout TES QLA ULT

- The logical operators are many-body observables

- So how do we read them out fault-tolerantly

- When you decide on a basis for final measurement,
you stop caring about some errors

- You can then measurement in a product basis

- Final readout and final stabilizer measurement can
be constructed from the result

- Measurement errors are effectively the same as
errors before measurement

IBM Quantum / © 2020 IBM Corporation 26

Decoding IBM Quantum

- Given the measurement results, we need to work out what errors happened
- More specifically, the ‘equivalence class’ of errors

- This is the job of the decoding algorithm

IBM Quantum / © 2020 IBM Corporation 27

Decoding with MWPM IBM Quantum

- A good option is MWPM

- Just as we considered for the repetition code

- Again we start with the simple and unrealistic case: errors only
between measurement

- Each round can be decoded separately, corresponding to MWPM on
a 2D graph

- Decoding for X and Z errors can also be done independently

IBM Quantum / © 2020 IBM Corporation 28

Decoding IBM Quantum

- We need to be careful to account for the effects of the edges

- This is done by introducing extra ‘virtual nodes’
(also required for the repetition code, but we ignored it earlier)

Impertect Measurements

- Again, we have the problem of imperfect measurements
- The measurements might lie
- Errors on the additional qubit
- Errors in the CX gates

- We base the decoding using syndrome changes

— This leads to a 3D MWPM problem (2D space + time)

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

30

Threshold 1BM Quantum

- Correcting according to the right class removes the effects of errors
- Correcting according to the wrong class causes an operation on the encoded qubit (without our knowing)
- What is the probability of such an error, P, given the probability on the qubits of the code, p?

- We find a phase transition as L is increased (for an LxL grid)

D Pcty>P), POk

\

IBM Quantum / © 2020 IBM Corporation 31

More Logical Gates AU

- We’ve seen how to do logical X and Z
- A logical CX can be done without much trouble

- A logical H requires the lattice to be rotated, but that
can be done

- Other logical Clifford gates can be done with some
crazy tricks

- But that’s all! No other logical operations can be done
fault-tolerantly.

- A solution is magic state distillation, using the logical
gates we have to clean up the one we don’t

- But that’s beyond today’s lecture...

IBM Quantum / © 2020 IBM Corporation 32

Anyons in the Surtrace Code

- There are many variants on how qubits can be encoded
and manipulated in the surface code

- They all depend on the unique topological nature

- The ‘defects’ created by errors in the surface code
behave like particles

- All particles in our universe are either bosons or
fermions

- This due to topological restrictions in a 3D universe

IBM Quantum / © 2020 IBM Corporation

IBM Quantum

33

Anyons In the Surface Code IBM Quantum

- The surface code is only a 2D ‘universe’, so doesn’t have these restrictions

- How do these particles behave?

IBM Quantum / © 2020 IBM Corporation 34

Anyons in the Surtrace Code

- Braiding a particle corresponds to applying a stabilizer
- Their eigenstates defines the braiding phase

- Neither bosons nor fermions, but anyons!

IBM Quantum

IBM Quantum / © 2020 IBM Corporation

85|

Introduction to LDPC Codes

James R. Wootton
IBM Quantum

IBM Quantum

IBM Quantum

Why we like the surface code

- Each qubit is involved in only a finite number of syndrome measurements
- Each syndrome measurement requires only a finite number of qubits

- Qubits can be restricted to a 2D lattice with nearest neighbour entangling gates

IBM Quantum / © 2023 IBM Corporation

Why we don’t like the surface code

- We refer to codes using the parameters [[n,k,d]]
- n: the number of physical qubits
- k: the number of logical qubits
- d: the code distance

- For a surface code

n~d?, k=1, d=d

- Logical qubits made with the surface code are very expensive

R = lim == 0, d~nt/?

- Can we find codes with better scaling, while keeping the nice features?

IBM Quantum / © 2023 IBM Corporation

IBM Quantum

LDPC codes LEh D

- "Low density parity check” codes are classical EC codes for which
- Each bit is involved in only a finite number of checks

- Each check involves only a finite number of bits
- gLDPC codes are the same, but quantum

- Good qLDPC codes are those with good sets of parameters, such as

R=lim%=001), d~n

n-oon

- But how much do they deviate from a 2D lattice?

IBM Quantum / © 2023 IBM Corporation 4

gLDPC codes IBM Quantum

- We know a few bounds for purely 2D layouts, e.g.

-kd? <sn [Bravyi, Poulin, Terhal 2010]

- At least f—ld interactions of range are required [Baspin, Krishna 2022]

k
va

Hierarchical memories: Simulating quantum LDPC codes with local
gates

_ T h ese can a ls 0 b e V| 0 late d , at a p r| ce Christopher A. Pattison!, Anirudh Krishna®?, and John Preskill'*

LInstitute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125
2 Department of Computer Scien ‘tanford University, Stanford, CA, 94305

o Fo rexam p le 3 Stanford Institu'te for Theoretical Physics, Stanford University, tagn;’]o;(t}l CA, 94305

4AWS Center for Quantum Computing, Pasadena
n
k ~ —
log2n

but P decays only superpolynomially J—

Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing
efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality
constraints, it becomes challenging to realize these codes. In this paper, we construct a new family
of [N, K, D] codes, r ed to as hierarchical codes, that encode a number of logical qubits K =
Q(N/ log(N)z). The N** element H y of this code family is obtained by concatenating a constant-rate
quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to
implement the syndrome-extraction circuit C§ and achieve a threshold. Below threshold the logical
failure rate vanishes superpolynomially as a functlon of the distance D(N). We present a bilayer
architecture for implementing cfé‘ and estimate the logical failure rate for this architecture. Under
conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all

IBM Quantum / © 2023 IBM Corporation logical qubits are encoded in the surface code. 5

1/2
d ~nNn / March 9, 2023

gLDPC codes at IBM IBM Quantum

- At IBM we want codes with
- High distance and encoding rate
- A high threshold (or pseudothreshold) for circuit noise
- Superconducting qubit implementation

- A short-depth syndrome extraction circuit

IBM Quantum / © 2023 IBM Corporation 6

gLDPC codes at IBM IBM Quantum

- Answer comes from ”bivariant bicycle codes”

- Variant of quasi-cyclic codes [Kovalev, Pryadko 2013]

Net Encoding
Rate r

[212.0]
[00.5.10]
[108.5.10]

TINEAE)
251215 s ma ETIT.
1/()() 3() () -|— l/ - 1/ , :

Compare to [[2028,12,13]] surface code: r = 1/169

IBM Quantum / © 2023 IBM Corporation 7

gLDPC codes at IBM IBM Quantum

- Matches surface code performance, but with 10x fewer qubits!

-
o
,L

Surface [[1452,12,11]]
Surface [[2028,12,13]]
Surface [[2700,12,15]]
LDPC [[144,12,12]]

-
o
I

w

[
o
|

w

~

Q

[

-

©

—

S

-7

= 10
[
©
B

o

o

b |

[
o
|

o

1073
Error rate p

IBM Quantum / © 2023 IBM Corporation

Bilayer representation {EV R

~First: Tanner graphs

IBM Quantu m / © 2023 IBM Corporation 9

Bilayer representation {EV R

-If planar graphs aren’t good enough, we go for thickness-2

-Union of two planar graphs

Planar graph of wires /‘\
Qubits —¢ @ K 2 W a % @ X o ¥ o u s e

Planar graph of wires /

Bilayer representation {EV R

-Tanner graph for these codes

"Grid Representation”

IBM Quantum / © 2023 IBM Corporation 11

Bilayer representation {EV R

-Visual proof of thickness-2

Edges A3, Ag, and B3 Edges By, Bg, and Aj

IBM Quantum / © 2023 IBM Corporation

Bilayer representation 18M Quantum
-Tanner graph of [[114,12,12]]

Tanner Graph of the [[144,12,12]] Quasi-Cyclic Code

B =[X] check B =[Z] check ‘A’ edge

IBM Quantum / © 2023 IBM Corporation 13

Syndrome measurement circuit IBM Quantum

Pseudo-thresholds around 0.8%

Conclusions IBM Quantum

-gLDPC codes that outperform the surface code
-Better rate
-Same error suppression
-Similar pseudo-threshold

-The cost is a more complex Tanner graph

-But bilayer architecture is something we can achieve!

Bravyi et al., arXiv:2308.07915 (2023)

IBM Quantum

Thanks for your attention

gisk.it/decoders

