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Introduction

� Some applications, e.g. medical AI, have strict reliability requirements where
trustworthiness of the confidence estimation is crucial;

� Bayesian learning provides a well-established framework to train and analyse
uncertainty-aware models;

� An approach should be capable to provide (potential) advantage over classical
benchmark, run on currently available devices and be easily scalable.

In this work, we propose a hybrid quantum-classical Bayesian Neural Network (QCBNN) that
is capable to uncertainty-aware classification of ultrasound images. It shows a bigger gap in
confidence of correctly and incorrectly identified samples than its classical benchmark.
Additionally, we perform a systematic study of different quantum circuit architectures.
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Background

Bayesian learning

Bayesian Neural Networks (BNNs) are stochastic NN trained using
Bayesian inference, which comprise of

1. a stochastic model of a chosen parametrization prior p(w) and a
prior of confidence p(y|x,w), from which the posterior p(w|D) can
be estimated,

2. a functional model Φw(x), which in this case is a NN:

w ∼ p(w|D)
y = Φw(x) + ε

Probability of each class: p̂ = 1
N

∑N
i=0 Φwi

(x)

Our model

Quantum-classical
BNN

=
Quantum circuit

+
Classical NN
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Background

Variational Inference classically

Sampling directly from p(w|D) is intractable,
therefore to train Bayesian models we need to

approximate it.

For Variation Inference(VI) we select a family of

tractable distributions qθ(x) and tweak θ to

minimize the Kullback–Leibler (KL) divergence

between two distributions:

KL[qθ(w|D)||p(w|D)] = Ew∼qθ(w|D)

[
log

qθ(w|D)
p(w|D)

]

Variational Inference quantumly

Unfortunately, some parts of KL equation

cannot be measured on a quantum computer.

[Benedetti et al., 2021] proposed an adversarial

learning loop to go around this issue by

introducing a discriminator model dφ(w,D):

LKL(θ;φ) = Ew∼qθ(w|D)[logit(dφ(w,D))− log p(D|w)]
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Related work

FC Output

Prior

ŵ = p0(w)

Generator

w̃ = M(GQ
ϕq
()) Discriminator

Dψ(w)

Input

Born Machines (BM) offer a way to model a distribution using a
quantum state |ψ(θ, x)〉. These models generate bitstrings with
probabilities qθ(w|x) = | 〈w|ψ(θ, x)〉 |2. The power of this method to
model intractable distributions has been shown in
[Coyle et al., 2020].

[Nikoloska and Simeone, 2022] proposed one of initial architectures
idea for utilizing BMs in hybrid quantum-classical BNN setting.

� Showed utility on a toy example
� The weights of a NN are binary, which limits its applicability
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Model

We assemble multiple architectural ideas that have
proven to be viable in the literature to build a model
with wider applicability range:

functional model and its application case:
(hybrid) Convolutional Neural Network on
ultrasound images [Matic et al., 2022]

stochastic model:

learning loop
[Nikoloska and Simeone, 2022]
continues sampling technique
[Romero and Aspuru-Guzik, 2019]
ensemble of 10 voters

Conv FC

Post-processing

w = fϕc(w̃)

Prior

ŵ = p0(w)

Generator

w̃ = M(GQ
ϕq
(z))

Noise

z ∼ P (z) Discriminator

Dψ(w)

Input Output
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Experimental setup

Dataset

We focus on BreastMNIST dataset, which consists
of breast ultrasound 28× 28 images that are
classified into malignant and non-malignant
categories. There are 780 samples.

Environment

Classical part: implemented with
PyTorch and consists of a
convolutional layer and a
fully-connected layer.

Hybrid interface: The weights of the
convolutional layer are sampled from a
distribution either produced by a
classical NN (benchmark) or a PQC.

Quantum part: PQC consist of a
4-qubits are implemented in
PennyLane.
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Quantum circuits: Embedding

We select an embedding strategy that showed the most promise in other works
[Abbas et al., 2021, Matic et al., 2022] and our internal experiments, namely a higher-order
embedding layer.
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Quantum circuits: Calculation layers

We start with architectural ideas exploited in the papers that we used to construct the

model.
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Predictive performance
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Uncertainty estimation
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Choosing architecture

To find the best performing PQC we need to consider multiple behavioural parameters at once. To
ease the analysis, we fuse the uncertainty metrics and compare it to the final accuracy.
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Difference = Confidencecorrect × Ensemble fractioncorrect

− Confidenceincorrect × Ensemble fractionincorrect

From the above analysis we conclude that Romero
architecture had one of the strongest performances.
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Weight distribution
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All of PQC’s expectation values are biased
towards zero. The architectures that had more
wide spread distributions tend to have
stronger performances.

Keeping this in mind, we proceed to tweaking
the architectures in the following slides.
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Quantum circuits
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Predictive performance
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(b) Uncertainty
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Weight distribution
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Circuit I’s output is still biased towards 0.,
however, changing the entanglement layer
allowed the distributions to be wider and take
more expressive forms.

The models that performed at least the same as a
classical benchmark also have at maximum the
same density level, which aligns with a
hypothesis that BNN favour generators that
provide diverse outputs.
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Discussion

� Results imply that by introducing learnable parameters into the entangling layer
allows to achieve better performances for this task;

� A future research direction idea is to provide more theoretical basis that would allow to
construct tailored PQCs in a less heuristic fashion, e.g. [Schuld et al., 2021];

� Here, we do not distinguish between epistemic and aleatoric uncertainties,
e.g. [Nguyen and Chen, 2022] which is an interesting additional metric to consider next;

� Here, we modified a Born machine to allow for continuous weights, and hence shifted
the source of stochasticity from quantum to classical devices. A further direction
could be in developing something akin Monte-Carlo Dropout methods.
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Conclusion

In this work, we

introduce a Quantum-Classical Bayesian Neural Network (QCBNN) with continuous weights
for uncertainty-aware classification of breast ultrasound scans (BreastMNIST);

evaluate this model from the stand points of its predictive performance and uncertainty
awareness;

methodically test multiple PQC architectures in this scenario;

determine that certain architectural features, such as trainable entanglement layers and
rotation layers with less parameters, allow for better learning on this dataset;

test these hypotheses by building custom PQCs for this task that boost the performance and
even allow to slightly outperform the classical benchmark in terms of uncertainty awareness.
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(Appendix) Saturating the performance

Can we improve the performance of Circuit III by increasing the number of layers? The layers can
be added by simple repeating the computation layer, or adding both embedding and computation
layers together to create a re-uploading model [Pérez-Salinas et al., 2020].
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