Full counting statistics and cumulant evolution in infinite temperature quantum spin chains

Budapest University of Technology and Economics

C. P. Moca, M. A. Werner, M. Kormos, Ž. Krajnik, T. Prosen, and G. Zaránd

ReAQCT Bosch Budapest Innovation Campus

Angelo Valli

Spin transfer in S-1/2 anisotropic Heisenberg (XXZ) chain

$$\mathcal{H}_{\rm XXZ} = J \sum_{i} \left(S_i^x S_i^x \right)$$

symmetries

U(1) symmetry: conservation of S^z (charge)

SU(2) symmetry: conservation of S² — at Δ =1, isotropic point

integrability

extensive set of conserved quantities: strongly impact dynamics

- $X_{i+1}^{x} + S_{i}^{y}S_{i+1}^{y} + \Delta S_{i}^{z}S_{i+1}^{z}$
- drives dynamics correlates spins

prototypical model (not exotic)

real-life realization e.g.: KCuF3, SrCuO2, ...

Spin transfer in S-1/2 anisotropic Heisenberg (XXZ) chain

spin transfer across interface

 $\Gamma\longleftrightarrow\Delta S$

full counting statistics

 $P(\Gamma)$

probability distribution: characterizes the spin-transfer processes

infinite temperature state

$$\rho = \frac{1}{2^L} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{\otimes L}$$

$$\langle \Delta S \rangle = 0$$

 $(\Delta S)^2 \rangle \neq 0$

Spin transport

naïve expectation for **conserved quantities**

quantum quench protocol

$$\rho = \frac{1}{(1+\mu^2)^L} \bigotimes_{i=1}^{L/2} \begin{pmatrix} 1+\mu & 0\\ 0 & 1-\mu \end{pmatrix} \bigotimes_{i=L/2+1}^L \begin{pmatrix} 1-\mu & 0\\ 0 & 1+\mu \end{pmatrix}$$

probe **spin correlations** from spin profile $\langle S^{z}(x,t)S^{z}(0,0)\rangle = -\lim_{\mu\to 0}\frac{1}{\mu}\delta_{x}S^{z}$

Anomalous diffusion

key observation: (numerical evidence) charge across interface

$$Q(t) = \int_0^t d\tau \ j(L/2,\tau) \propto t^{1/z}$$

z = 3/2

Ljubotina et al., Nat. Comm 8 (2017); PRL 122 (2019)

0.2 $\left(\right)$ -0.2-0.4-0.6

- 0.4

Spin transport

naïve expectation for **conserved quantities**

quantum quench protocol

 $\rho = \frac{1}{(1+\mu^2)^L} \bigotimes_{i=1}^{L/2} \begin{pmatrix} 1+\mu & 0\\ 0 & 1-\mu \end{pmatrix} \bigotimes_{i=L/2+1}^L \begin{pmatrix} 1-\mu & 0\\ 0 & 1+\mu \end{pmatrix}$

probe **spin correlations** from spin profile $\langle S^z(x,t)S^z(0,0)\rangle = -\lim_{\mu\to 0}\frac{1}{\mu}\delta_x S^z$

Anomalous diffusion

key observation: (numerical evidence) charge across interface

$$Q(t) = \int_0^t d\tau \ j(L/2,\tau) \propto t^{1/z}$$

superdiffusion with dynamical exponent:

z = 3/2

Ljubotina et al., Nat. Comm 8 (2017); PRL 122 (2019)

- 0.4

- 0.2

Spin transport regimes: S-1/2 XXZ chain

Experimental evidence

neutron scattering

Tennant

cold atoms setup

Bloch

quantum simulators

Google Quantum AI / Prosen

Wei et al., Science **376** (2022)

Rosenberg et al., Science **384** (2024)

Kardar-Parisi-Zhang (KPZ) universality class

stochastic non-linear differential equation

$$\partial_t h = D \partial_x^2 h + \lambda (\partial_x h)^2 + \eta$$

 $\int \int \int \delta$ -correlated noise diffusion non-linear

describe interface growth of **classical** processes

coffee stains

tumor cell

- burning paper,
- fire spread in a forest
- ice on a windscreen
- polymerization
- traffic
- ...

i.i.d. waiting times $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- linear growth speed
- lack of spatial correlations

Gaussian fluctuations $h(x,t) \sim t + \gamma t^{1/2}$

i.i.d. waiting times $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- linear growth speed
- height correlated transversally
 over long distances

Tracy-Widom fluctuations

 $h(x,t) \sim \gamma_0 t + \gamma_{1/3} t^{1/3} F_1$

time : space : fluctuations scaling like 3 : 2 : 1

Corwin NAMS **63** (2016)

Kardar-Parisi-Zhang (KPZ) universality class

stochastic non-linear differential equation

$$\partial_t h = D \partial_x^2 h + \lambda (\partial_x h)^2 + \eta$$

 $\int \int \int \delta$ -correlated noise diffusion non-linear

describe interface growth of **classical** processes

coffee stains

tumor cell

- burning paper,
- fire spread in a forest
- ice on a windscreen
- polymerization
- traffic
- ...

i.i.d. waiting times $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- linear growth speed
- lack of spatial correlations

Gaussian fluctuations

 $h(x,t) \sim t + \gamma t^{1/2}$

i.i.d. waiting times $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- linear growth speed
- height correlated transversally over long distances

Tracy-Widom fluctuations

 $h(x,t) \sim \gamma_0 t + \gamma_{1/3} t^{1/3} F_1$

time : space : fluctuations scaling like 3 : 2 : 1

Corwin NAMS **63** (2016)

Why is anomalous transport in quantum spin chains surprising?

concept of universality in processes far from equilibrium

KPZ processes: preferred direction in time

classical systems

robust (universal) feature

quantum systems

"fragile" i.e., it depends on microscopic details:

integrability

non-abelian symmetry - e.g. SU(2)

Wei et al., Science **376** (2022)

Higher-order correlation functions

$$P(\Gamma) = \frac{1}{(2S+1)^L} \sum_{s,s'} \delta$$

Quantum trajectories

Schmidt decomposition of the time-evolution operator

• access **directly** full counting statistics

 $|\psi(t)\rangle$

• MPS bond dimension grows exponentially — **short timescales**

Generating function

MPO representation of spin on one side of the interface

$$R(\lambda) = e^{-i\lambda\Sigma} = \prod_{j < L/2} e^{-i\lambda S_j^z}$$

$$G(\lambda, t) = \frac{1}{(2S+1)^L} \langle R(\lambda, t) R^{\dagger}(\lambda^*, 0) \rangle$$

evaluate cumulants:

$$\kappa_n(t) = \left. \frac{\partial^n}{\partial \lambda^n} \underbrace{\log G(\lambda, t)}_{F(\lambda, t)} \right|_{\lambda=0}$$

truncated Taylor expansion

$$F_{\phi}(\lambda,t) = -\sum_{k=1}^{\infty} \frac{1}{2k!} \lambda^{2k} e^{i2k\phi} \kappa_{2k}(t)$$

- MPO bond dimension grows slowly unprecedentedly-long timescales
- access full counting statistics **indirectly** through moments/cumulants

Google experiment

Sycamore is a **transmon** superconducting quantum processor

$$U = \prod_{j \in \text{even}} \text{fSim}_j(\theta, \phi) \prod_{j \in \text{odd}} \text{fSim}_j(\theta, \phi)$$
$$\text{fSim}(\theta, \phi) = \begin{pmatrix} e^{-i\phi/2} & 0 & 0 & 0\\ 0 & \cos(\theta) & i\sin(\theta) & 0\\ 0 & i\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 0 & e^{-i\phi/2} \end{pmatrix}$$

higher-order correlation functions incompatible with KPZ

Rosenberg et al., Science **384** (2024)

Transport regimes: integrable S-1/2 XXZ chain

2. cumulant (variance)

$$\left\langle \left(\Gamma - \left\langle \Gamma \right\rangle \right)^2 \right\rangle = \kappa_2(t) \sim t^{1/z}$$

dynamic exponent

$$z^{-1} = \frac{d}{d\log t}\log\kappa_2(t)$$

- $z = \begin{cases} 1 & \Delta < 1 \text{ (easy-plane)} \\ 3/2 & \Delta = 1 \text{ (isotropic)} \\ 2 & \Delta > 1 \text{ (easy-axis)} \end{cases}$

easy-plane — XX limit

Del Vecchio² & Doyon, J. Stat. Mech. (2022)

SU(2) isotropic point

 $\gamma_4 \rightarrow 0?$ OR $\rightarrow \text{const.}?$

SU(2) isotropic point

Floquet time evolution

$$fSim(\theta,\phi) = \begin{pmatrix} e^{-i\phi/2} & 0 & 0 & 0\\ 0 & \cos(\theta) & i\sin(\theta) & 0\\ 0 & i\sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 0 & e^{-i\phi/2} \end{pmatrix}$$
$$T = I = I = J$$
$$J = \delta t J = \phi$$

Floquet dynamical exponent

Take-home

XXZ chain: superdiffusion with KPZ-like dynamical exponent:

- integrability
- non-abelian symmetry

nature of **fluctuations unclear**

NEW MPO METHOD

full counting statistics through cumulants

skewness and kurtosis seem incompatible with KPZ

Thank you for your attention!

unprecedentedly-long time scale

Backup

generating function – XX limit

QGF: low bond dimension sufficient whereas MCS breaks down at

 $t_{\max} = t(M, \delta t)$

Valli et al., preprint (soon)

generating function – XX limit

quantum trajectories simulations degrade at longer timescales

 $t_{\rm max} J \approx 25$

Valli et al., preprint (soon)

generating function – XXZ isotropic point

Valli et al., preprint (soon)

higher-order cumulants

Non-integrable quantum spin chain S = 1

KPZ-like scaling from second cumulant κ_2

numerics suggests **near-integrability**

Popkov et al., PNAS **112** (2015)

quantum quench protocol

$$\rho = \frac{1}{(1+\mu^2)^L} \bigotimes_{i=1}^{L/2} \begin{pmatrix} 1+\mu \\ 0 \end{pmatrix}$$

 $\langle S^z(x,t)S^z(0,0)\rangle$

$$\begin{pmatrix} 0 \\ 1-\mu \end{pmatrix} \bigotimes_{i=L/2+1}^{L} \begin{pmatrix} 1-\mu & 0 \\ 0 & 1+\mu \end{pmatrix}$$

probe spin correlations from spin profile

$$0)\rangle = -\lim_{\mu \to 0} \frac{1}{\mu} \delta_x S^z$$

Kardar-Parisi-Zhang (KPZ) universality class

stochastic non-linear differential equation

$$\partial_t h = D \partial_x^2 h + \lambda (\partial_x h)^2 + \eta$$

 $\int \int \int \delta$ -correlated noise diffusion non-linear

describe interface growth of of **classical** processes

coffee stains

tumor cell

- burning paper,
- fire spread in a forest
- ice on a windscreen
- polymerization
- traffic
- ...

Corwin NAMS **63** (2016)