RECENT ADVANCES IN QUANTUM COMPUTING AND TECHNOLOGY

Improving flux-based gates in superconducting QPUs through Automated Calibration & Model Learning

Anurag Saha Roy

QruiseOS

Fully automated comprehensive characterization and bringup of superconducting quantum computers

QruiseOS: Rapid & Comprehensive Bring-up

Storage and Retrieval of System Models

- alpha
- amplitude
- anhar_raw
- coupling_of_flux.a
- coupling_of_flux.b
- coupling_of_flux.c
- coupling_of_flux.g12
- crosstalk
- delta_fit.b
- delta_fit.c
- deltas
- drag
- fidelity
- freq_of_flux.d
- freq_of_flux.freq
- freq_of_flux.phi_0
- freq_of_flux.phi
- freq_raw
- gs

- relax_time
- resonance_fluxes.flux
- spam
- stretched_exp_fit.alpha
- stretched_exp_fit.theta
- t2
- x180_amplitude
- x180_ef.amplitude
- x180_ef.duration
- x180_ef.freq
- x180.amplitude
- x180.drag
- x180.duration
- x90_randomized_benchmarking.a
- x90_randomized_benchmarking.alpha
- x90_randomized_benchmarking.b
- x90_randomized_benchmarking.epc
- x90_randomized_benchmarking.spam
- x90.amplitude
- x90.drag_optimal_control
- x90.drag
- x90.duration
- zz_coupling_coupler_flux
- zz_coupling

- 40+ parameters for a
 - typical tunable qubit model
- Versioning of models
- Retrieval and updating of

model parameters

3 40+ Distinct 1 and 2 Qubit Experiments

- Resonator Spectroscopy
- Resonator Filter Spectroscopy
- Pulsed Qubit Spectroscopy
- Amplitude Rabi
- Ramsey
- Amplitude Rabi
- T2 Echo
- T1
- Readout 0-1 Contrast (Coarse)
- Readout 0-1 Discriminator Training
- DRAG calibration
- Calibrate $\pi/2$ amplitude with Ping-Pong
- Calibrate π amplitude with Ping-Pong
- Ping-Pong for 1-2 state
- Pulsed Qubit Spectroscopy
- Pulsed Qubit Spectroscopy per Flux
- Amplitude Rabi between 1 and 2 state
- Readout 0-1-2 Discriminator Training
- Ramsey 1-2
- T2 Echo

- T2* Ramsey
- v-to-hz
- AllXY
- Randomized benchmarking
- Optimal control of Gaussian $\pi/2$ -pulses
- Cryoscope
- Pi-half ORBIT
- Correlated readout error
- Qubit-qubit spectroscopy
- Coupling spectroscopy
- Cross resonance amplitude sweep
- Cross resonance phase sweep
- Tune cross-resonance pulse duration
- 2 qubit Quantum Process Tomography
- Flux crosstalk calibration
- ZZ coupling
- Two-qubit Randomized Benchmarking
- Interleaved RB for Cross Resonance gate
- Closed Loop CZ calibration
- Quantum Noise Spectroscopy (QNS)

Starting from basic calibration...

Resonator Spectroscopy

Filter Spectroscopy

Pulsed Qubit Spectroscopy

DRAG Calibration

Qubit Amplitude Rabi

 $\pi/2$ -pulse Ping Pong

T₂ Echo - Qubit Dephasing

0-1 Readout Contrast

0-1 Discriminator Training

 π -pulse Ping Pong

To more in-depth characterization;

As well as advanced pulse shaping tools...

Optimization of a fast pi-half drag pulse with a piecewise-constant ansatz

For both 1 and various 2Q Gate Optimizations

Cross Resonance Phase

Cross Resonance Amplitude

CZ Chevron Characterization

DAG based Experiment Execution

Currently running 40 experiments per qubit nightly on a 5Q-4C QPU takes a couple of hours.

Experiment Browser

Qruise Experiment Dashboard

Experiment Browser

Current branch:

main

▼ Qubit/Q1

- AmplitudeRabi
- AmplitudeRabi12
- AmplitudeRabiFine
- CouplerSpectroscopy

2023-10-15T04:00:09.630406 - Coupler spectroscopy for qubits Q1, Q3 2023-10-14T03:53:45.933564 - Coupler spectroscopy for qubits Q1, Q3 2023-10-13T03:51:43.835438 - Coupler spectroscopy for qubits Q1, Q3 2023-10-12T03:54:04.907690 - Coupler spectroscopy for qubits Q1, Q3 2023-10-11T03:53:04.623176 - Coupler spectroscopy for qubits Q1, Q3 2023-10-10T03:57:23.112824 - Coupler spectroscopy for qubits Q1, Q3 2023-10-09T18:47:44.794942 - Coupler spectroscopy for qubits Q1, Q3 2023-10-09T03:54:49.819315 - Coupler spectroscopy for qubits Q1, Q3

- CrossResonanceAmplitudeSweep
- CrossResonancePhaseSweep
- Cryoscope
- DRAGCalibration
- FilterSpectroscopy
- FluxSpectroscopy
- OptimalControlRX90
- OrbitCalibration
- PingPongPingPong180
- PulsedSpectroscopy
- PulsedSpectroscopy12
- QubitQubitCoupling
- Ramsey
- Ramsey12
- RandomizedBenchmarking
- ReadoutContrast
- ReadoutDiscriminator2
- ReadoutDiscriminator3
- ReadoutDiscriminatorBasic

Experiment Details

-0.04

-0.02

0

ID: CouplerSpectroscopy/clnqxfay600001f2ceu8xxw98 Timestamp: 2023-10-15T04:00:09.630406 Description: Coupler spectroscopy for qubits Q1, Q3 Duration: 703828.392 ms Attached notebook: Open

I 🗘 😳 🕸

0.02

- View all past experiments and experiment results
- Re-run any experiment on demand
- Analyse trends in system parameters or experiment outcomes

Currently deployed on a 5Q-4C QPU with 20,000+ experiments from last 10 months

Historical System State Tracking

Variable

-Qubit/Q2

— Qubit/Q3

-Qubit/Q1

5/01

Qubit/Q5

— Coupling/Q3-Q2

Currently deployed on a 5Q-4C QPU with 20,000+ experiments from last 10 months

Anharmonicity

-2.300e+8

-2.400e+8

-2.500e+8

-2.600e+8

-2.700e+8

-2.800e+8

2/15

3/01

3/15

time

4/01

4/15

What do I do with all this data?

Don't stop here!

- Need for calibration proved the model is broken.
- We don't understand why calibrated pulses work better.
- We don't understand why calibrated pulses aren't perfect.
- We don't understand how to improve the system.

Model Learning using **QruiseML**

The Model Learning Loop

Example Case Study:

Learning and correcting CZ chevrons

CZ via bipolar flux pulse (DiCarlo's SNZ)

V. Negîrneac et al. Phys. Rev. Lett. 126, 220502 (2021)

System Hamiltonian: $H = H_{q1} + H_{q2} + H_{int} + H_{drive}$

$$H/\hbar = \sum_{i=A,B} \left[\omega_i b_i^\dagger b_i - rac{\delta_i}{2} \left(b_i^\dagger b_i - 1
ight) b_i^\dagger b_i
ight] + g_{AB} (b_A + b_A^\dagger) (b_B + b_B^\dagger) + \omega_A \lambda_A (\phi_0, \phi_{ ext{off}}, \phi_{ ext{ext}}(t)) b_A^\dagger b_A$$

 $g_{AB} =$ coupling strength between qubit A and B at zero flux $\phi_{\text{ext}}(t) =$ external flux on control qubit A

 $\lambda_A(\phi_0, \phi_{\text{off}}, \phi_{\text{ext}}(t)) =$ function of control qubit flux offset, periodicity and external flux

Hardware schematic diagram:

Learn from the unipolar chevron

Uncompensated unipolar flux pulse

83 learned parameters

Learn from the unipolar chevron

Uncompensated unipolar flux pulse

Learn from the unipolar chevron

Validate by using the learned model on bipolar pulses

Uncompensated bipolar flux pulse

Simulated chevrons (validation)

Validate by using the learned model on bipolar pulses

Why model learning?

• We showed learning of 83 parameters from 1 chevron plot, with validation and pulse correction.

- Learn any parameters from any relevant data set.
- No need for dedicated experiments for each parameter.
- You probably already have the all data needed from bring-up.

• Provides better insight into your device's behavior.

Summary of Automated Calibration & Model-based Learning

- Rapid Automated Calibration for quick bring-up of flux-based gates
- Heterogeneous learning from multiple experiments simultaneously.
- Case Study: Learned from cryoscope and unipolar chevrons, and validated learning by correcting both unipolar and bipolar chevrons

Learning from unipolar chevrons

Validation with precompensted pulses

Come talk to us!

anurag@qruise.com

Learn about QruiseOS and QruiseML Explore partnership opportunities 🔍 Try a Hands-on Demo 💡

WE ARE HIRING

Experimentalists | Software Engineers Theorists | Quantum Engineers (Anywhere in Europe, CET +/- 1)

Some example experiments with pretty plots!

Flux Pre-Compensation

Pre-compensation of flux pulses to produce symmetric 2 qubit chevrons

Selibration of Tunable Coupler

Flux dependent Residual ZZ Coupling

Quasiparticle Tunneling in Ramsey EF

Ristè, D., Bultink, C., Tiggelman, M. et al. Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat Commun 4, 1913 (2013)

Crosstalk compensation changing qubit freq.

Telegraphic Noise during extended operation

30 Million Shots

64K Shots

Result of repeatedly running the same RB circuit over 1 hour