

Problem-informed Graphical Quantum Generative Learning

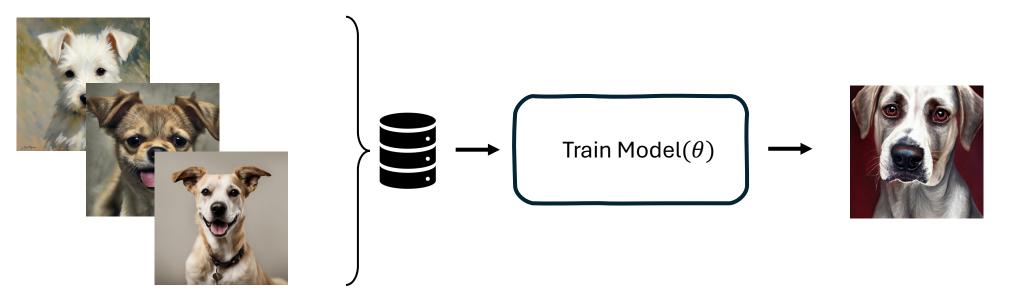
Bence Bakó, Wigner RCP

arXiv:2405.14072

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

Generative modeling

• Learn a representation of some **probability distribution** in order to **generate realistic samples**.



Generated with DeepAl image generator

Generative QML

2018.01 OCBM

"Natural" ML application for quantum computers.

2016.01 QBM

The QBM proposed by *Amin et al.* is a probabilistic model based on Boltzmann distribution, where the training problem is circumvented via a quantum upper bound.

2018.02 QVAE

The QVAE introduced by *Khoshaman* et al. adopts a classical VAE structure and a quantum prior distribution in the latent space realized by a QBM model.

2018.04 QGAN

The concept of QGAN was proposed by *Lloyd and Weedbrook*. The potential merits of QGANs when the generator or the discriminator (or both) is implemented on quantum computers are discussed.

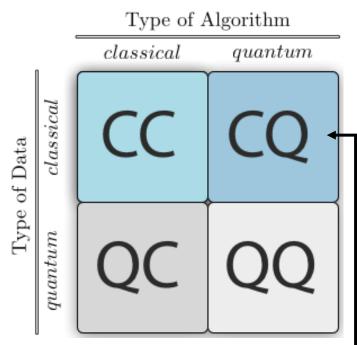
2020.06 Variational QBM

A variant of QBM is proposed by

Zoufal et al., where the VarQITE

method was implemented on PQCs

to facilitate exact gradient updates.



Source: Wikipedia

Source: J. Tian, et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, Oct. 2023.

Quantum Circuit Born Machine

Paradigmatic quantum generative model

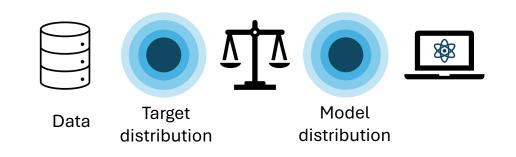
The QCBM proposed by Benedetti et al.

leverages the Born rule and is naturally

implemented on quantum circuits

executed on NISQ devices.

• Inherits the Born rule



Problem-informed Graphical Quantum Generative Learning

Quantum Circuit Born Machines

General task:

- Learn a representation of the (target) probability distribution over binary random variables.
- Access to explicit distribution (not realistic) OR a limited number of samples.

QCBM task:

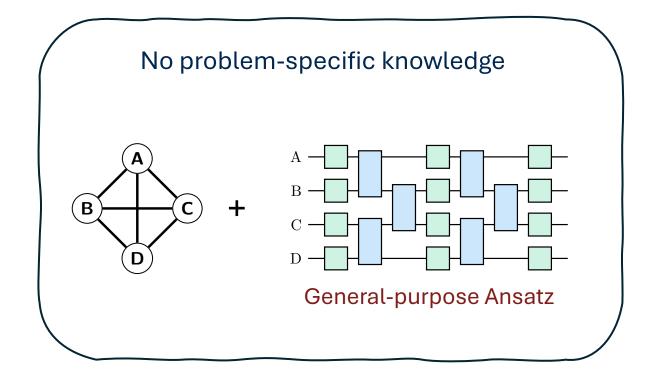
 Learn a quantum state via optimizing the parameters of a variational quantum circuit s. t.

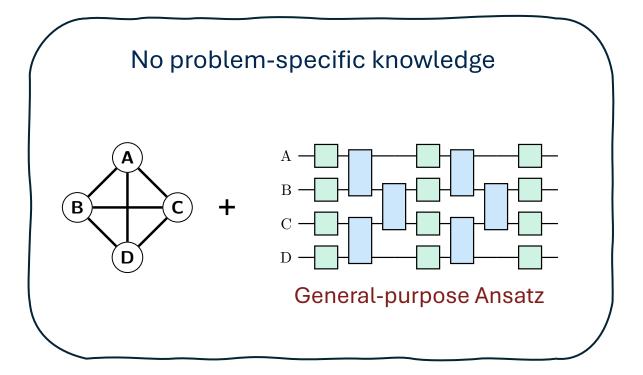
$$\begin{aligned} |\psi\rangle &= U(\boldsymbol{\theta}) |\psi_0\rangle \\ P_{\boldsymbol{\theta}}(\boldsymbol{x}) &= |\langle \boldsymbol{x} |\psi\rangle|^2 \\ d(P_{\boldsymbol{\theta}}, P^*) \leq \varepsilon \end{aligned}$$

where $\varepsilon \in (0,1)$

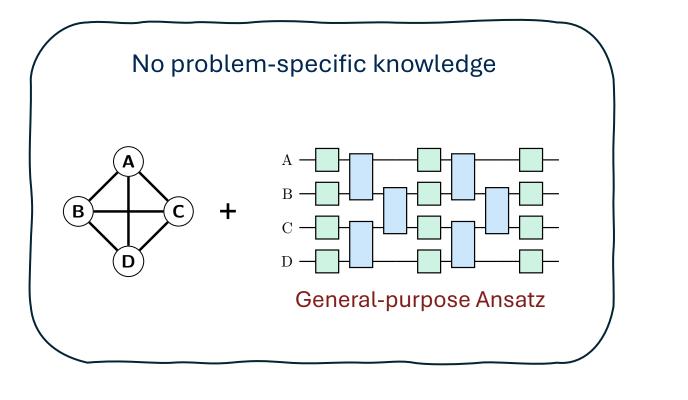
Initialize circuit with random parameters $\boldsymbol{\theta} = (\boldsymbol{\theta}^1, \cdots, \boldsymbol{\theta}^L)$ Measurements $|0\rangle$ $|0\rangle$ $\mathcal{U}(oldsymbol{ heta}^2)$ $\mathcal{U}(\boldsymbol{\theta}^l)$ $\mathcal{U}(oldsymbol{ heta}^L)$ $\mathcal{U}(\boldsymbol{\theta}^1)$ $|0\rangle$ 2 4) Update θ . Repeat 2 through 4 until convergence Estimate mismatch between data and quantum outcomes 3 Reference data to be learned Outcome from quantum circuit 0.25 0.25 0.20 0.20 Probability 0.10 robability 0.10 0.05 0.05 0.00 0.00 0 35 1012 15 35 1012 15 0 Output state Output state

Source: M. Benedetti, et al., npj QI, vol. 5, no. 1, p. 45, 2019.

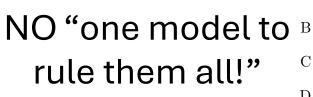


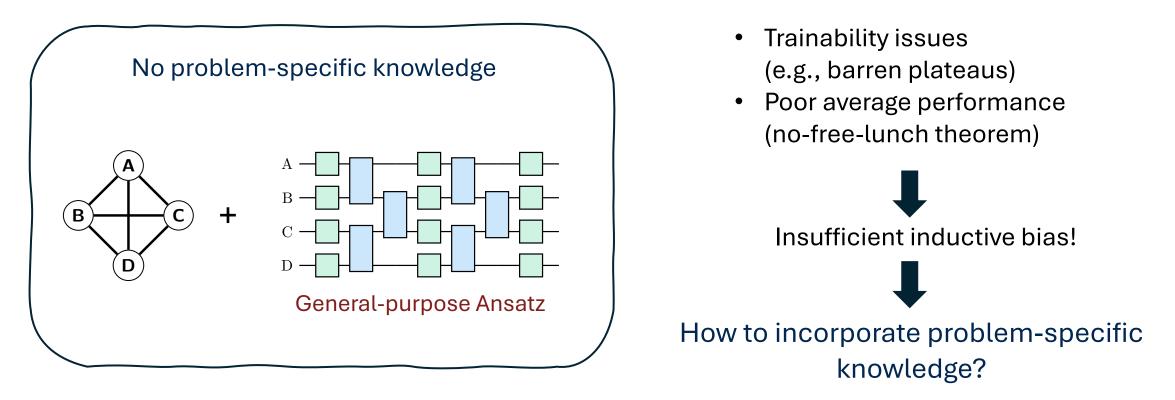


- Trainability issues (e.g., barren plateaus)
- Poor average performance (no-free-lunch theorem)



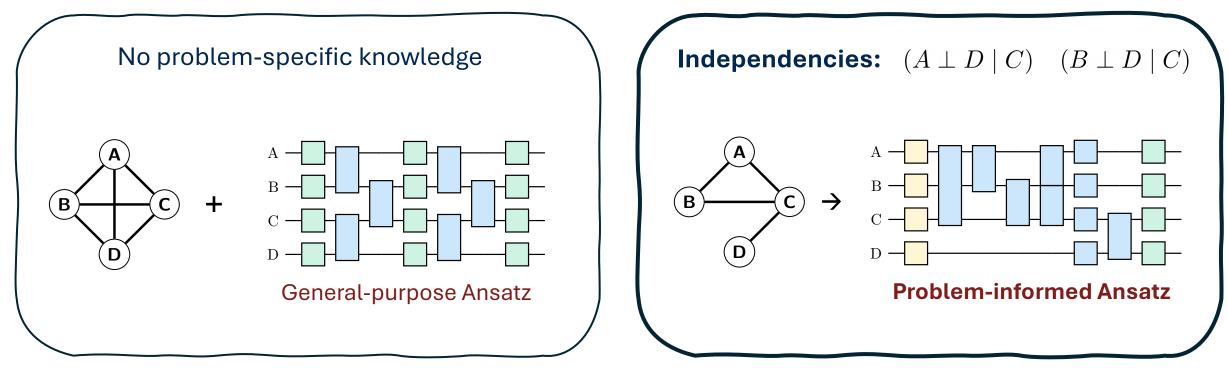
- Trainability issues (e.g., barren plateaus)
- Poor average performance (no-free-lunch theorem)





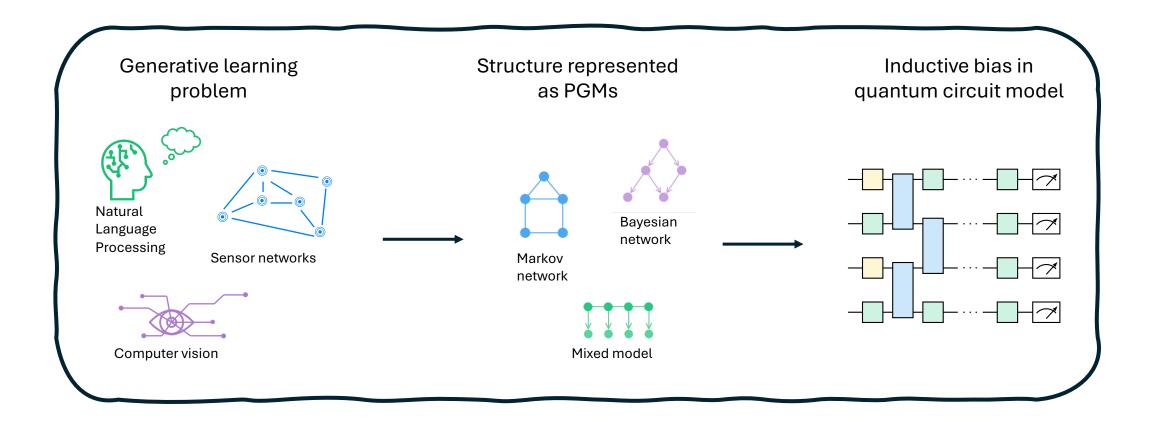
General-purpose vs Problem-informed

Task: learn P(A,B,C,D) – joint probability distribution of correlated (binary) random variables

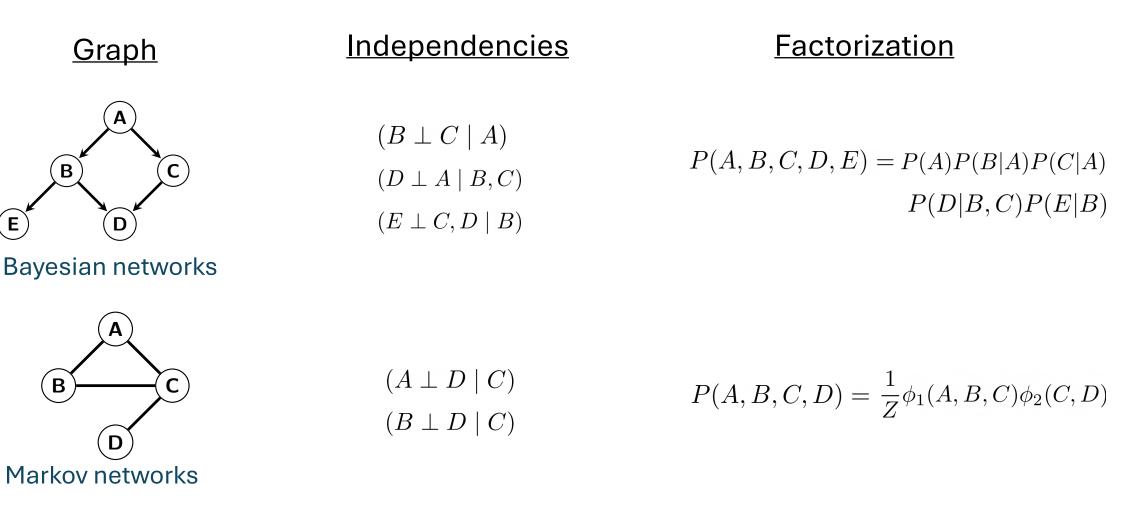


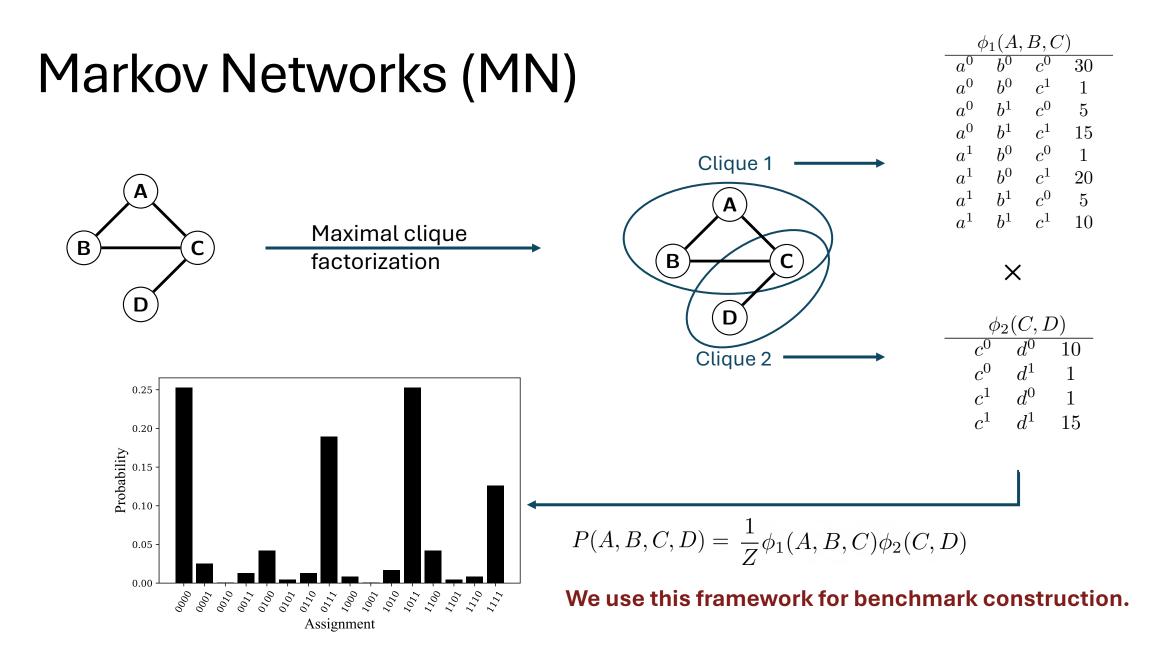
Use Probabilistic Graphical Models (PGMs)

Problem-informed Generative QML Framework

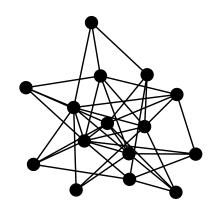


Probabilistic Graphical Models





Quantum Circuit Markov Random Field (QCMRF)



$$H'(\boldsymbol{\beta}) = \sum_{C \in \mathcal{C}} \bigotimes_{v \in C} \beta_{C,v}(I + Z_v) \rightarrow H(\boldsymbol{\alpha}) \rightarrow U_Z(\boldsymbol{\alpha}) = e^{-iH(\boldsymbol{\alpha})}$$

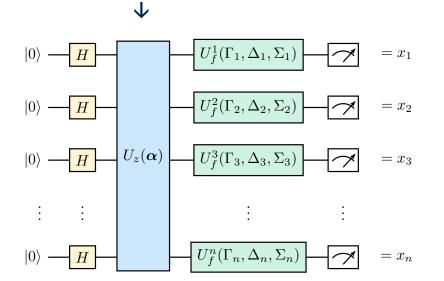
Quantum Circuit Ising Born Machine (QCIBM)

- Similar, but problem-agnostic Ansatz
- Only 2-local interactions

 \rightarrow

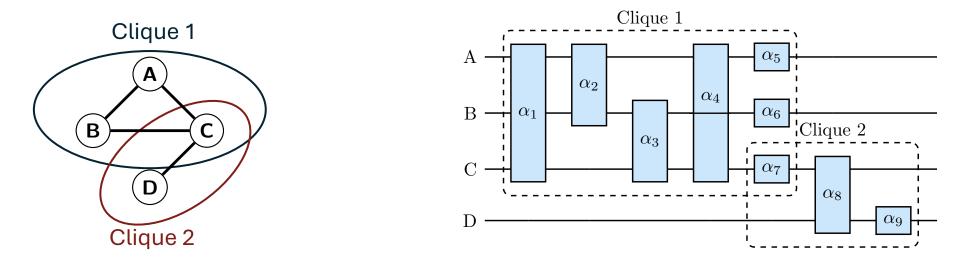
• All-to-all connectivity

B. Coyle, et al., npj QI, vol. 6, no. 1, p. 60, 2020.

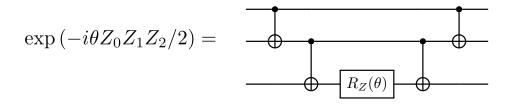


Higher-order Ising Hamiltonian

QCMRF example



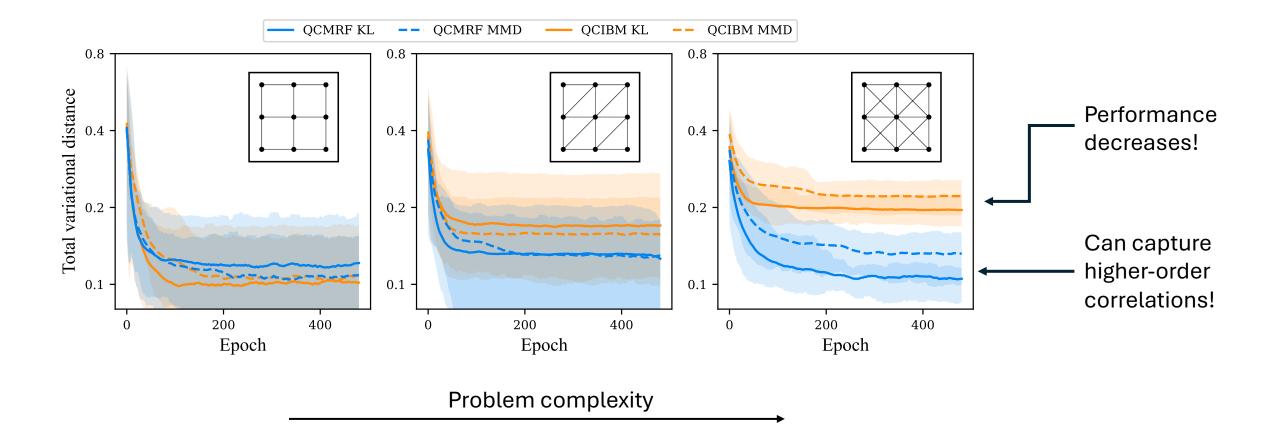
 $H(\boldsymbol{\alpha}) = \alpha_1 Z_A Z_B Z_C + \alpha_2 Z_A Z_B + \alpha_3 Z_B Z_C + \alpha_4 Z_A Z_C + \alpha_5 Z_C Z_D + \alpha_6 Z_A + \alpha_7 Z_B + \alpha_8 Z_C + \alpha_9 Z_D$



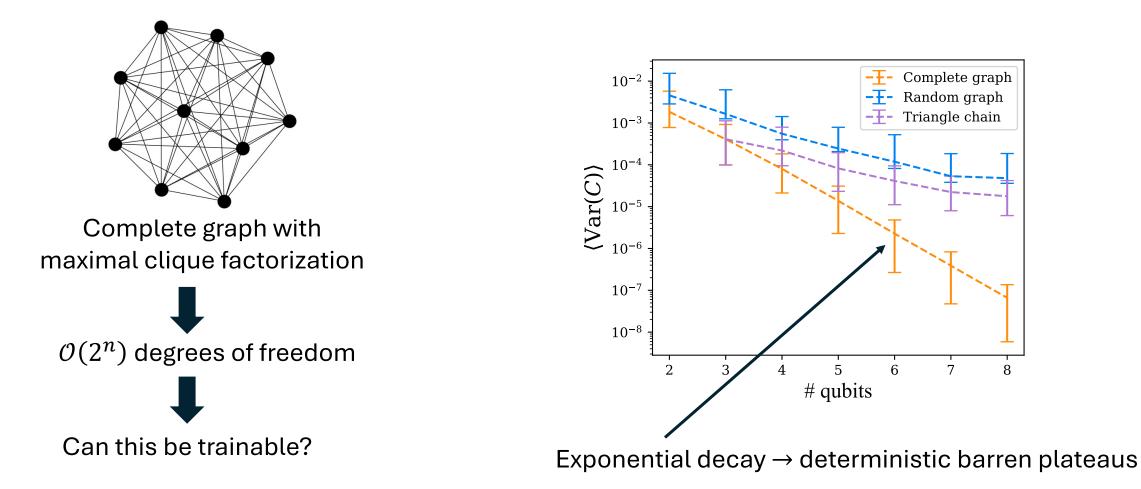
MNs can represent ANY probability distribution!

• When is this **representation useful** (for our model)?

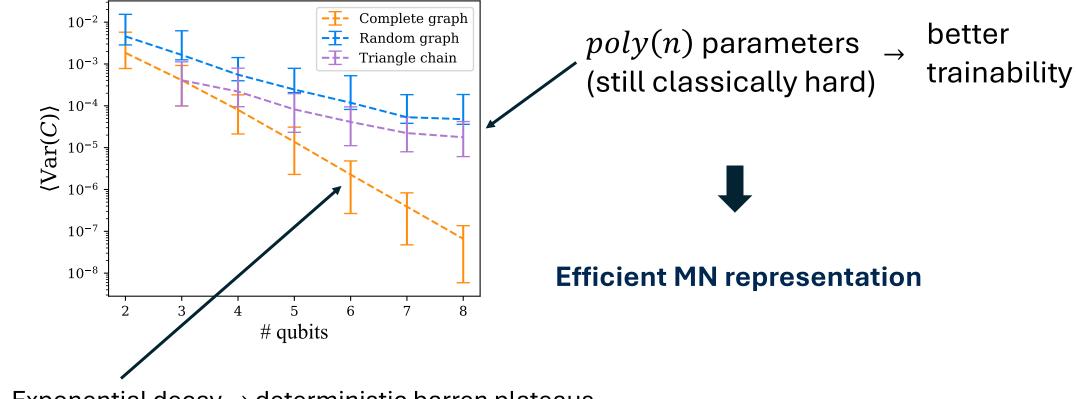
1. When does it outperform problem-agnostic?



2. What problems should we consider?



2. Efficient MN representation

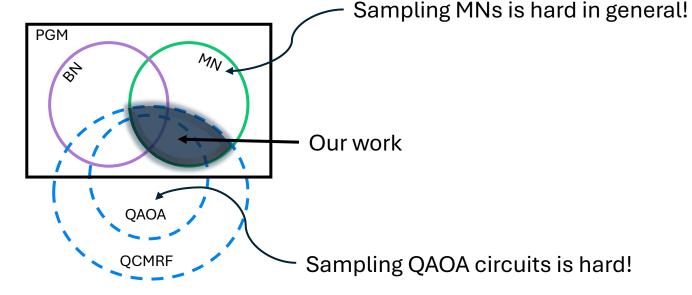


Exponential decay \rightarrow deterministic barren plateaus

3. Potential for Quantum Advantage?

1. Quantum learning advantage in

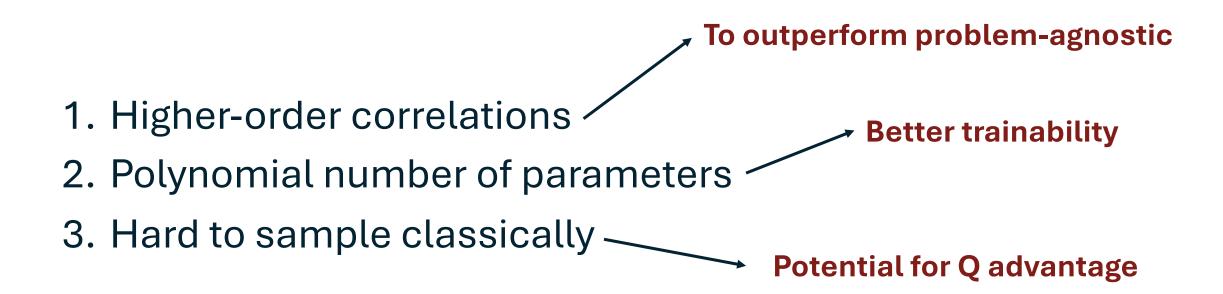
- Accuracy
- Learning speed
- Sample complexity



Farhi, Harrow. arXiv:1602.07674, 2019. Krovi. arXiv:2206.05642, 2022.

2. Quantum advantage in sampling the unknown target distribution:

- Target distribution is learnable (up to given error) by both a classical and a quantum model
- Sampling the trained quantum circuit is more efficient



Problem-informed Graphical Quantum Generative Learning

Bence Bakó,^{1,2} Dániel T. R. Nagy,^{1,2} Péter Hága,³ Zsófia Kallus,³ and Zoltán Zimborás^{1,2,4}

¹Eötvös Loránd University, Budapest, Hungary ²HUN-REN Wigner Research Centre for Physics, Budapest, Hungary ³Ericsson Research, Budapest, Hungary ⁴Algorithmiq Ltd, Kanavakatu 3C, Helsinki, 00160, Finland

arXiv:2405.14072

Nemzeti Kutatási, Fejlesztési És Innovációs Hivatal

