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Generative modeling

• Learn a representation of some probability distribution in order 
to generate realistic samples.

Train Model(𝜃)

Generated with DeepAI image generator
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Generative QML
“Natural” ML application for quantum computers.

Source: Wikipedia

Source: J. Tian, et al., IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Oct. 2023. 

Data Target
distribution

Model
distribution

Quantum Circuit Born Machine

• Paradigmatic quantum generative model
• Inherits the Born rule
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Quantum Circuit Born Machines

Source: M. Benedetti, et al., npj QI, vol. 5, no. 1, p. 45, 2019. 

QCBM task:

• Learn a quantum state via optimizing the 
parameters of a variational quantum circuit                     
s. t.

        where 

General task:

• Learn a representation of the (target) probability 
distribution over binary random variables.

• Access to explicit distribution (not realistic) OR 
a limited number of samples.
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General-purpose QCBMs
Task: learn P(A,B,C,D) – joint probability distribution of correlated (binary) random variables

No problem-specific knowledge
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General-purpose QCBMs
Task: learn P(A,B,C,D) – joint probability distribution of correlated (binary) random variables

• Trainability issues           
(e.g., barren plateaus)

• Poor average performance  
(no-free-lunch theorem)

No problem-specific knowledge
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NO “one model to 
rule them all!”

WHY?



General-purpose QCBMs
Task: learn P(A,B,C,D) – joint probability distribution of correlated (binary) random variables

• Trainability issues           
(e.g., barren plateaus)

• Poor average performance  
(no-free-lunch theorem)
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How to incorporate problem-specific 
knowledge?

Insufficient inductive bias!



General-purpose vs Problem-informed

No problem-specific knowledge
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Independencies: 

→

Problem-informed Ansatz
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Task: learn P(A,B,C,D) – joint probability distribution of correlated (binary) random variables
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Use Probabilistic Graphical Models (PGMs)



Problem-informed Generative QML Framework

Structure represented 
as PGMs

Generative learning 
problem

Inductive bias in 
quantum circuit model

Natural 
Language 
Processing

Sensor networks

Computer vision

. . .

. . .

. . .

. . .

Bayesian 
network

Markov 
network

Mixed model
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Probabilistic Graphical Models
Independencies Factorization

Bayesian networks

Markov networks

Graph
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Markov Networks (MN)

Maximal clique 
factorization

�1(A,B,C) �2(C,D)
a0 b0 c0 30 c0 d0 10
a0 b0 c1 1 c0 d1 1
a0 b1 c0 5 c1 d0 1
a0 b1 c1 15 c1 d1 15
a1 b0 c0 1
a1 b0 c1 20
a1 b1 c0 5
a1 b1 c1 10

�1(A,B,C) �2(C,D)
a0 b0 c0 30 c0 d0 10
a0 b0 c1 1 c0 d1 1
a0 b1 c0 5 c1 d0 1
a0 b1 c1 15 c1 d1 15
a1 b0 c0 1
a1 b0 c1 20
a1 b1 c0 5
a1 b1 c1 10

A

B C

D

Clique 1

Clique 2

A

B C

D

✕

We use this framework for benchmark construction.
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Quantum Circuit Markov Random Field (QCMRF)

= x1

= x2

= x3

...
...

...

= xn
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1
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2
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|0i H U
3
f (�3,�3,⌃3)

...

|0i H U
n
f (�n,�n,⌃n)

→ → →

→

Higher-order Ising Hamiltonian
Duplicate terms and identities discarded

Quantum Circuit Ising Born Machine (QCIBM)
• Similar, but problem-agnostic Ansatz
• Only 2-local interactions
• All-to-all connectivity

B. Coyle, et al., npj QI, vol. 6, no. 1, p. 60, 2020. 
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QCMRF example
Clique 1

Clique 2

A

↵1

↵2 ↵4

↵5

B
↵3

↵6

C ↵7

↵8

D ↵9

RZ(✓)

Clique 1

Clique 2
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•MNs can represent ANY probability distribution!

•When is this representation useful (for our model)?
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1. When does it outperform problem-agnostic?

Can capture 
higher-order 
correlations!

Performance 
decreases!

Problem complexity
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2. What problems should we consider?
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Complete graph with 
maximal clique factorization 

𝒪 2! 	degrees of freedom

Can this be trainable? Exponential decay → deterministic barren plateaus



2. Efficient MN representation
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Exponential decay → deterministic barren plateaus

𝑝𝑜𝑙𝑦 𝑛  parameters 
(still classically hard)

→
better 
trainability

Efficient MN representation 



3. Potential for Quantum Advantage?

BN

MN

QAOA

QCMRF

Our work

PGM

1. Quantum learning advantage in
• Accuracy
• Learning speed 
• Sample complexity

2. Quantum advantage in sampling the unknown target distribution:
• Target distribution is learnable (up to given error) by both a 

classical and a quantum model
• Sampling the trained quantum circuit is more efficient

Sampling QAOA circuits is hard!
Farhi, Harrow. arXiv:1602.07674, 2019.
Krovi. arXiv:2206.05642, 2022.

Sampling MNs is hard in general!
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Most promising problems

1. Higher-order correlations
2. Polynomial number of parameters
3. Hard to sample classically
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To outperform problem-agnostic

Better trainability

Potential for Q advantage
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