

() ReAQCT 2024

June 19-20

2024 Budapest

Ab-initio theory of nuclear spin flip processes within NV center of diamond

via orbital degrees of freedom

Gergő Thiering^[1], Richard Monge^[3], Tom Delord^[3], Carlos A. Meriles^[3], Adam Gali^[1,2]

Phys. Rev. Lett. 131, 236901 (2023) + doi.org/10.48550/arXiv.2402.19418 *experimental theoretical model* Jun 11, 2024

^[1] Wigner Research Centre for Physics, Hungary
 ^[2] Budapest University of Technology and Economics, Hungary
 ^[3] Department of Physics, CUNY- , New York, New York 10031
 ^[4] CUNY-Graduate Center, New York, New York 10016, USA.

Why DFT?

DFT is conventionally used for: <u>electronic structure</u>

simulate defects in ~100-1000-atom supercells to get:

- Formation energies
- ☞ **Optical** excitations (~0.1 eV precision HSE06 hybrid functional)
- See Electron-phonon coupling (vibronic sideband for optical centers)

DFT: *density functional theory* – simulate the electronic structure

← diamond Bravais lattice (8-atom supercell)

on HPC supercomputers

Why DFT?

DFT is conventionally used for: <u>electronic structure</u>

simulate defects in ~100-1000-atom supercells to get: "hidden" properties of qubits

- Formation energies
- Solution → Optical excitations (~0.1 eV precision HSE06 hybrid functional)
- See Electron-phonon coupling (vibronic sideband for optical centers)
- Spin-phonon relaxation
- Spin-orbit matrix elements: λLS (λup to ~20% precision)
- Spin-spin interaction: ZFS (Zero field splitting) magnetic dipole-dipole: SDS
- Hyperfine interaction: *electronic* + *nuclear spin dipole-dipole*: *SAI*
- Nuclear quadrupolar interaction: IQI

aim: determine unconventional (spin) parameters inaccessible by experiments

This talk: Predict motion of ¹⁴N nuclear spin during optical cycles

Introduction: *qubit* $|0\rangle$ *initialization for* NV - electronic spin

G. Thiering, A. Gali, Phys. Rev. B **96**, 081115(R) (2017) **G. Thiering**, A. Gali, Phys. Rev. B **98**, 085207 (2018) M. L. Goldman, ... Phys. Rev. Lett. **114**, 145502 (2015) ... and many other studies Introduction: *qubit* $|0\rangle$ *initialization for* $NV - {}^{14}N$ *nuclear spin*

This talk: Predict relaxation of ¹⁴N nuclear spin during optical cycles

637 nm

... and many other studies

supercell with NV inside

Electronic structure of NV

Jahn teller effect within |³E>

tensors

ZFS for the ground state:

$$\overleftrightarrow{D} = \begin{pmatrix} -\frac{1}{3}D & 0 & 0\\ 0 & -\frac{1}{3}D & 0\\ 0 & 0 & +\frac{2}{3}D \end{pmatrix}$$

$$\hat{H} = \overrightarrow{S} \overleftrightarrow{D} \overleftarrow{S}$$

- T distortion induces distorted $|e_x\rangle, |e_y\rangle$ orbitals
- JT motion induces large changes in ZFS! or in hyperfine: or in quadrupole:

The |³E | excited triplet (fine structure)

 m_L - orbital quantum number $|e_{\pm}\rangle = (|e_x\rangle \pm |e_y\rangle)/\sqrt{(2)}$ m_S - electronic spin

The |³E | excited triplet (fine structure)

$$\hat{H} = D^{(g)} \left(\hat{S}_z^2 - \frac{1}{3} S(S+1) \right) + Q^{(g)} \left(\hat{I}_z^2 - \frac{1}{3} I(I+1) \right) + A_{\parallel}^{(g)} \hat{S}_z \hat{I}_z + \frac{1}{2} A_{\perp}^{(g)} \left(\hat{S}_+ \hat{I}_- + \hat{S}_- \hat{I}_+ \right)$$
spin-spin ZFS nuclear quadrupole hyperfine interaction

$$\hat{S}_z, \hat{S}_\pm, |m_S = \pm 1, 0 \rangle$$
 electronic S=1 spin of NV(-)

 $\hat{I}_z, \hat{I}_\pm, |m_I = \pm 1, 0\rangle$ nuclear I=1 spin of ¹⁴N

$$+\sum_{ij} A_{ij}^{C_{1}} \hat{S}_{i} \hat{I}_{j}^{C_{1}} + \dots$$
¹³C hyperfine
 $A_{c} \sim MHz$
not discussed now

$$\begin{split} \text{spin-orbit} \\ \hat{H}_0 &= \lambda^{(e)} \hat{\sigma}_z \hat{S}_z + \\ D^{(e)} \Big(\hat{S}_z^2 - \frac{1}{3} S(S+1) \Big) + Q^{(e)} \Big(\hat{I}_z^2 - \frac{1}{3} I(I+1) \Big) + A_{\parallel}^{(e)} \hat{S}_z \hat{I}_z + \frac{1}{2} A_{\perp}^{(e)} \left(\hat{S}_+ \hat{I}_- + \hat{S}_- \hat{I}_+ \right) \\ \text{spin-spin ZFS} \quad \text{nuclear quadrupole} \quad \text{hyperfine interaction} \end{split}$$

$$\hat{W} = D_{1}^{(e)} \left[\left(\hat{S}_{z} \hat{S}_{+} + \hat{S}_{+} \hat{S}_{z} \right) \hat{\sigma}_{-} + \left(\hat{S}_{z} \hat{S}_{-} + \hat{S}_{-} \hat{S}_{z} \right) \hat{\sigma}_{+} \right] + D_{2}^{(e)} \left[\hat{S}_{-}^{2} \hat{\sigma}_{-} + \hat{S}_{+}^{2} \hat{\sigma}_{+} \right] + Q_{1}^{(e)} \left[\left(\hat{I}_{z} \hat{I}_{+} + \hat{I}_{+} \hat{I}_{z} \right) \hat{\sigma}_{-} + \left(\hat{I}_{z} \hat{I}_{-} + \hat{I}_{-} \hat{I}_{z} \right) \hat{\sigma}_{+} \right] + Q_{2}^{(e)} \left[\hat{I}_{-}^{2} \hat{\sigma}_{-} + \hat{I}_{+}^{2} \hat{\sigma}_{+} \right] + A_{1}^{(e)} \left[\left(\hat{I}_{z} \hat{S}_{+} + \hat{I}_{+} \hat{S}_{z} \right) \hat{\sigma}_{-} + \left(\hat{I}_{z} \hat{S}_{-} + \hat{I}_{-} \hat{S}_{z} \right) \hat{\sigma}_{+} \right] + A_{2}^{(e)} \left[\left(\hat{S}_{-} \hat{I}_{-} \hat{\sigma}_{-} + \hat{S}_{+} \hat{I}_{+} \hat{\sigma}_{+} \right] \right]$$

orbital flip: $\hat{\sigma}_{\pm} |e_{\pm}\rangle = |e_{\mp}\rangle$ nucl

nuclear+electronic spin-orbit

$$\begin{aligned} & \text{Spin Hamiltonian for the } | {}^{3}\text{E} \right) \text{ excited level} \\ & \text{spin-orbit} \\ \hat{H}_{0} &= \lambda^{(e)} \hat{\sigma}_{z} \hat{S}_{z} + \\ & D^{(e)} \left(\hat{S}_{z}^{2} - \frac{1}{3} S(S+1) \right) + Q^{(e)} \left(\hat{I}_{z}^{2} - \frac{1}{3} I(I+1) \right) + A_{\parallel}^{(e)} \hat{S}_{z} \hat{I}_{z} + \frac{1}{2} A_{\perp}^{(e)} \left(\hat{S}_{+} \hat{I}_{-} + \hat{S}_{-} \hat{I}_{+} \right) \\ & \text{spin-spin ZFS nuclear quadrupole hyperfine interaction} \\ & \Delta m_{I} = \pm 1 \quad {}^{14}\text{N nuclear spin flips } \Delta m_{I} = \pm 2 \\ \hat{W} &= D_{1}^{(e)} \left[\left(\hat{S}_{z} \hat{S}_{+} + \hat{S}_{+} \hat{S}_{z} \right) \hat{\sigma}_{-} + \left(\hat{S}_{z} \hat{S}_{-} + \hat{S}_{-} \hat{S}_{z} \right) \hat{\sigma}_{+} \right] + D_{2}^{(e)} \left[\hat{S}_{-}^{2} \hat{\sigma}_{-} + \hat{S}_{+}^{2} \hat{\sigma}_{+} \right] + \\ & Q_{1}^{(e)} \left[\left(\hat{I}_{z} \hat{I}_{+} + \hat{I}_{+} \hat{I}_{z} \right) \hat{\sigma}_{-} + \left(\hat{I}_{z} \hat{I}_{-} + \hat{I}_{-} \hat{I}_{z} \right) \hat{\sigma}_{+} \right] + Q_{2}^{(e)} \left[\hat{I}_{-}^{2} \hat{\sigma}_{-} + \hat{I}_{+}^{2} \hat{\sigma}_{+} \right] + \\ & A_{1}^{(e)} \left[\left(\hat{I}_{z} \hat{S}_{+} + \hat{I}_{+} \hat{S}_{z} \right) \hat{\sigma}_{-} + \left(\hat{I}_{z} \hat{S}_{-} + \hat{I}_{-} \hat{S}_{z} \right) \hat{\sigma}_{+} \right] + A_{2}^{(e)} \left[\left(\hat{S}_{-} \hat{I}_{-} \hat{\sigma}_{-} + \hat{S}_{+} \hat{I}_{+} \hat{\sigma}_{+} \right] \end{aligned}$$

orbital flip: $\hat{\sigma}_{\pm} |e_{\pm}\rangle = |e_{\pm}\rangle$ nuclear+electronic spin-orbit

(g) ground state triplet: |³A₂
(e) excited level triplet: |³E

"p" and "q" Ham reduction factors within Jahn-Teller theory are required

p.w.: present work

Processes that flip the ¹⁴N nuclear spin

(e) – excited ³E state

R. Monge, T. Delord, **G. Thiering**, Á. Gali, C. A. Meriles Phys. Rev. Lett. 131, 236901 (2023) *experimental*

Nuclear splin flip probabilities

Nuclear splin flip probabilities

Summary

Complete ab-initio theory for \overleftrightarrow{D} , \overleftrightarrow{Q} , \overleftrightarrow{A} tensors (spin-spin ZFS, quadrupole, hyperfine) \rightarrow not only trivial D, Q, A, A, terms

 \rightarrow including the nontrivial, orbital driven D₁, D₂, Q₁, Q₂, A₁, A₂ parameters

T During optical cycles within $|^{3}E\rangle$:

 \rightarrow "new" ¹⁴N nuclear spin relaxation channels open

 $\Delta m_I = \pm 1 \qquad \text{by} \quad \begin{array}{c} A^e_{\perp} \hat{S}_{+} \hat{I}_{-} \\ \text{(hyperfine)} \end{array} \qquad \Delta m_I = \pm 2 \qquad \begin{array}{c} \text{by} \quad Q^{(e)}_{2} (\hat{I}^2_{-} \hat{\sigma}_{-} + ...) \\ \text{(nuclear quadrupole)} \end{array}$

orbital-nuclear spin interaction

Control and readout for nuclear spin

 \rightarrow ¹⁴N nuclear spin relaxes much faster in |³E) than that in |³A₂)

- \rightarrow longer than ~µs total stay within |³E) (readout & preparation)
- \rightarrow or more than N>~1000 opt. cycles

Summary

Complete ab-initio theory for \overleftrightarrow{D} , \overleftrightarrow{Q} , \overleftrightarrow{A} tensors (spin-spin ZFS, quadrupole, hyperfine) \rightarrow not only trivial D, Q, A, A, terms

 \rightarrow including the nontrivial, orbital driven D₁, D₂, Q₁, Q₂, A₁, A₂ parameters

T During optical cycles within $|^{3}E\rangle$:

 \rightarrow "new" ¹⁴N nuclear spin relaxation channels open

 $\Delta m_I = \pm 1 \qquad \text{by} \quad A^e_{\perp} \hat{S}_{+} \hat{I}_{-} \qquad \Delta m_I = \pm 2$ (hyperfine)

by $Q_2^{(e)}(\hat{I}_{-}^2\hat{\sigma}_{-}+...)$

(nuclear quadrupole) orbital-nuclear spin interaction

Outlook: *Apply on "G4V" defects*

SiV(-), GeV(-), SnV(-), PbV(-)

Control and readout for nuclear spin

 \rightarrow ¹⁴N nuclear spin relaxes much faster in |³E) than that in |³A₂)

- \rightarrow longer than ~µs total stay within |³E) (readout & preparation)
- \rightarrow or more than N>~1000 opt. cycles

Acknowledgments

Adam Gali's group Gergő Thiering (me) Anton Pershin Song Li Meysam Mohseni Nima Ghafaricherati Bian Guodong

All colors of Physics

Thank you for your kind attention!

experimental: Phys. Rev. Lett. 131, 236901 (2023)

> Resonant versus nonresonant spin readout of a NV center in diamond under cryogenic conditions

Tom Delord

group:

R Monge, T Delord, G Thiering, Á Gali, **CA** Meriles

QUANTERA **MAESTRO** guantera.eu/maestro

Kifü HPC Hungary

doi.org/10.48550/arXiv.2402.19418

wiki.kfki.hu/nano

theoretical model:

János Bolvai Research Scholarship

NATIONAL RESEARCH. DEVELOPMEN ND INNOVATION OFFICE HUNGARY PROJECT FINANCED FROM MOMENTUM OF INNOVATION

ReAQCT 2024 •**(**]])

June 19-20

2024 Budapest

City College of New York **Carlos A. Meriles**

Hyperfine on ¹³C sites will be entangled to *orbital* degrees of freedom too!

$$\hat{W} = \overleftarrow{S} \overleftrightarrow{A_0} \overrightarrow{I} + q(\overleftarrow{S} \overleftarrow{A}_x \overrightarrow{I} \hat{\sigma}_z + \overleftarrow{S} \overleftarrow{A}_y \overrightarrow{I} \hat{\sigma}_x)$$

three 3x3 hyperfine matrices: $\overleftrightarrow{A_0}$: "normal" hyperfine $\overleftrightarrow{A_x}, \overleftrightarrow{A_y}$: "orbital" hyperfine for one ¹³C site

should be visible below ~20 K >50 K orbital averaging should occur similarly to that of NV's ³E excited state $\langle \hat{\sigma}_z \rangle = \langle \hat{\sigma}_x \rangle = 0$ (thermal average)

hyperfine [111] for one 📫 ¹³C site: for Dynamic Jahn-Teller systems $\hat{\sigma}_x = (1^{1}) = |e_x\rangle\langle e_y| + |e_y\rangle\langle e_x|$ $\hat{\sigma}_z = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = |e_x\rangle \langle e_x| - |e_y\rangle \langle e_y|$

How to interpret ab-initio data

Three different $\overleftrightarrow{A}, \overleftrightarrow{B}, \overleftrightarrow{C}$ hyperfine tensors on 3 equivalent ¹³C sites directly from (a) (e) $\overleftarrow{B}^{(xx)}$ *ab-initio Y*[011] $\overleftarrow{A}^{(+120^\circ)} = \hat{C}_3 \overleftarrow{B}^{(xx)}$ $|e_x\rangle = \frac{|2\overline{1}\overline{1}\rangle}{\sqrt{6}}$ $\overleftrightarrow{A}(xx)$ calculations $|e_{\rm (+120^{\circ})}\rangle = \frac{|\bar{1}\bar{1}2\rangle}{\sqrt{6}} = -\frac{1}{2}|e_x\rangle - \frac{\sqrt{3}}{2}|e_y\rangle$ $Z^{[111]}$ 1111 \hat{C}_{3}^{-1} \searrow_X [211] \hat{C}_{3}^{-1} (d)(b) [100] $X_{\mathsf{cart.}}$ $|e_y\rangle = \frac{|01\overline{1}\rangle}{\sqrt{2}}$ $\overleftrightarrow{A}^{(-120^{\circ})} = \hat{C}_3 \overleftrightarrow{C}^{(xx)}$ C_1 [001] $|e_{\rm (-120^{\circ})}\rangle = \frac{|\bar{1}2\bar{1}\rangle}{\sqrt{6}} = -\frac{1}{2}|e_x\rangle + \frac{\sqrt{3}}{2}|e_y\rangle$ symmetry considerations, electronic wavefunction phases "orbital rotation"

static Jahn-Teller distortion $\rightarrow e_x$, e_y orbitals split the hyperfine tensors too!

Nuclear splin flip probabilities

Coherent time evolution for Q₂ (a) 10- |A₂> $p(|E_u\rangle \otimes |\mp\rangle \rightarrow |E_u\rangle \otimes |\pm\rangle) = (Q_2^{(e)}n\tau_{\rm rad})^2 = 0.109,$ ³E Energies (GHz) 3 Ghz 5- $|A_1\rangle$ local strain $|E_x\rangle$ $|E_{y}\rangle$ splitting $p(|E_u\rangle \otimes |\mp\rangle \rightarrow |E_x\rangle \otimes |\pm\rangle) = 0,$ $|E_{1,2}\rangle$ -5-0.0 2.5 5.0 Transverse Strain δ, (GHz) Fermi's golden rule for hyperfine transitions $p(|E_x\rangle \otimes |0\rangle \rightarrow |E_{1,2}\rangle \otimes |\pm 1\rangle) = 2 \times \left(\frac{A_{\perp}^{(e)}}{\lambda^{(e)} - D^{(e)}}\right)^2 \times n = 0.112,$ $p\left(|E_x\rangle \otimes |0\rangle \to |A_1\rangle \otimes |\pm 1\rangle\right) = 2 \times \frac{1}{2} \left(\frac{A_{\perp}^{(e)}}{\lambda^{(e)} + D^{(e)} - D_2^{(e)}}\right)^2 \times n = 0.017,$ $p\left(|E_x\rangle \otimes |0\rangle \to |A_2\rangle \otimes |\pm 1\rangle\right) = 2 \times \frac{1}{2} \left(\frac{A_{\perp}^{(e)}}{\lambda^{(e)} + D^{(e)} - D_{e}^{(e)}}\right)^2 \times n = 0.021,$