

Leakage Mobility in Superconducting Qubits as a Leakage Reduction Unit

arXiv:2406.04083

Joan Camps, Ophelia Crawford, <u>György P. Gehér</u>, Alexander V. Gramolin, Matthew P. Stafford, Mark Turner

Riverlane, Cambridge, UK

ReAQCT, 20 June 2024, Budapest

Leakage

- Requires methods to force the state back into the computational space
- E.g. resetting the qubit removes leakage from it.

Leakage Reduction Units (LRUs)

Hardware-based LRU

For instance,

- Multi-Level Reset (MLR).
- Data Qubit Leakage Removal (DQLR).

Circuit-based LRU

- Reset removes leakage from individual qubits.
- We construct circuits to measure the stabilisers that also periodically reset each qubit.

K. C. Miao et al., Nat. Phys. 19, 1780 (2023).M. McEwen, D. Bacon, C. Gidney, Quantum 7, 1172 (2023).

Planar code and Quantum memory

Planar code stability experiment

	Memory	Stability
	Preserving an encoded state through <u>time</u>	Preserving encoded information through <u>space</u>
More qubits	Improves	Degrades
More QEC rounds	Degrades	Improves

- Simulate realistic leakage in SC qubits, especially the effect of leakage mobility
- Evaluate its effect during FTQC
- Combine this with LRUs

- Simulate realistic leakage in SC qubits, especially the effect of leakage mobility
- Evaluate its effect during FTQC
- Combine this with LRUs

Fujitsu Challenge

- 39-qubit density-matrix simulator.
- Uses 512 Fujitsu A64FX processors.
- Uses <u>Qulacs</u> a fast quantum simulator software.
- Prizes: a total of \$100k for the three best projects.

- Simulate realistic leakage in SC qubits, especially the effect of leakage mobility
- Evaluate its effect during FTQC
- Combine this with LRUs

Fujitsu Challenge

- 39-qubit density-matrix simulator.
- Uses 512 Fujitsu A64FX processors.
- Uses <u>Qulacs</u> a fast quantum simulator software.
- Prizes: a total of \$100k for the three best projects.

- Simulate realistic leakage in SC qubits, especially the effect of leakage mobility
- Evaluate its effect during FTQC
- Combine this with LRUs

Fujitsu Challenge

- 39-qubit density-matrix simulator.
- Uses 512 Fujitsu A64FX processors.
- Uses <u>Qulacs</u> a fast quantum simulator software.
- Prizes: a total of \$100k for the three best projects.

Some simulation details

- Qulacs does not support qutrits: $|0\rangle \equiv |\overline{00}\rangle, |1\rangle \equiv |\overline{01}\rangle, |2\rangle \equiv |\overline{10}\rangle.$
- Thus, we can simulate only 19 qutrits.
- Quantum memory needs increasing qubit number to show improvement in QEC performance.
- On the other hand, stability experiment has better QEC performance with increased number of rounds unlike quantum memory.

Some simulation details

- Qulacs does not support qutrits: $|0\rangle \equiv |\overline{00}\rangle, |1\rangle \equiv |\overline{01}\rangle, |2\rangle \equiv |\overline{10}\rangle.$
- Thus, we can simulate only 19 qutrits.
- Quantum memory needs increasing qubit number to show improvement in QEC performance.
- On the other hand, stability experiment has better QEC performance with increased number of rounds unlike quantum memory.
- We can fix a planar code patch and simply increase simulation time for better performance.

$$P_{\text{fail}} = P_{\text{SPAM}}(\Lambda_s)^{-n_r/2}$$

Noise model — the leakage part

Leakage mobility

 $|21\rangle \rightarrow -\sqrt{1-4L_m}e^{+i\phi}|21\rangle + 2\sqrt{L_m}|12\rangle$ $|12\rangle \rightarrow -\sqrt{1-4L_m}e^{-i\phi}|12\rangle - 2\sqrt{L_m}|21\rangle$

We simulated the following parameters:

- $L_1 = 0.001, 0.005$
- $L_m = 0.005, 0.025, 0.06, 0.09, 0.125$
- With and without wiggling ٠

Qubit frequency arrangement

()high

Exponential error suppression

$$P_{\text{fail}} = P_{\text{SPAM}}(\Lambda_s)^{-n_r/2}$$

Steeper line \rightarrow better error suppression \rightarrow larger Λ_s

Exponential error suppression

• High mobility escapes wiggling

• High mobility reduces non-wiggled error

Steeper line \rightarrow better error suppression \rightarrow larger Λ_s

Conclusion

- Realistic simulations of stability experiments under leakage
- Leakage reduced with patch-wiggling at low leakage mobility
- Patch-wiggling is counterproductive at high mobility
- Mobility is itself can be an LRU
- The paper is available on arXiv: 2406.04083

Thank you

Additional slides

Qubit recycling

Noise model — leakage-ness part

Parameter	Numerical value
Relaxation time T_1	$30 \ \mu s$
Dephasing time $T_2 = T_{\phi}/2$	$30~\mu{ m s}$
$\sqrt{Y}, \sqrt{Y}^{\dagger}$ gate duration	$20 \mathrm{ns}$
CZ gate duration	$40 \mathrm{~ns}$
Measurement duration	600 ns
Reset duration	500 ns

$$\begin{aligned} \frac{d\rho}{dt} &= -i[H, \,\rho] + \sum_{j} L_{j}\rho L_{j}^{\dagger} - \frac{1}{2} \left\{ L_{j}^{\dagger}L_{j}, \,\rho \right\} \\ L_{\text{amp}} &= \sqrt{\frac{1}{T_{1}}} a = \sqrt{\frac{1}{T_{1}}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} \\ L_{\text{deph},1} &= \sqrt{\frac{4}{9T_{2}}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad L_{\text{deph},2} &= \sqrt{\frac{1}{9T_{2}}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad L_{\text{deph},3} &= \sqrt{\frac{1}{9T_{2}}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \end{aligned}$$

$$\mathcal{E}(t) = \exp(t\mathcal{L})$$
 $\mathcal{E}(\rho) = \sum_{i} K_{i}\rho K_{i}^{\dagger}, \sum_{i} K_{i}^{\dagger}K_{i} = I.$

 $T_{1,2}(t_{\text{gate}}/2) U_{\text{gate}} T_{1,2}(t_{\text{gate}}/2)$

Noisy gate without leakage:

Noise model — the leakage part

Parameter	Numerical value	Qubit froquency arrangement	
Relaxation time T_1	$30~\mu{ m s}$	Qubit frequency analigement	
Dephasing time $T_2 = T_{\phi}/2$	$30~\mu{ m s}$		
$\sqrt{Y}, \sqrt{Y}^{\dagger}$ gate duration	$20 \mathrm{~ns}$		
CZ gate duration	$40 \mathrm{ns}$		requencies
Measurement duration	600 ns		$ 1 \cdot 1 $
Reset duration	$500 \ \mathrm{ns}$) high
Conditional phase ϕ	$\pi/10$		medium
Variable parameters:			
Leakage L_1	0.1%,0.5%		low
Leakage mobility L_m 0.5%, 2.5%	%,6%,9%,12.5%		

Leakage

Leakage mobility $|21\rangle \rightarrow -\sqrt{1 - 4L_m}e^{+i\phi} |21\rangle + 2\sqrt{L_m} |12\rangle$ $|12\rangle \rightarrow -\sqrt{1 - 4L_m}e^{-i\phi} |12\rangle - 2\sqrt{L_m} |21\rangle$

CZ gate

Additional results for 2x4 rotated patch

Additional results for 3x3 unrotated patch

