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1 - Introduction to DAQC

Analog quantum computing:

Continuous evolution under a time-dependent Hamiltonian

UAQC = T exp

(
−i

∫ T

0
dt H(t)

)
Robust (quantum control theory)

We can only do what the system is designed for
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1 - Introduction to DAQC

Gate based/digital quantum computing (DQC):

Discrete application of unitary operators

UDQC =
∏
i

Ui , Ui ∈ U(2N)

Rx(π/2) Rx(−π/2)

Rx(−π/2) Rx(π/2)

Allows error correction

Noisy two-qubit gates
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1 - Introduction to DAQC

“Universal quantum computation can be performed using
any entangling interaction and local unitary operations.”

{USQG, e
−itHTB} is universal

J. L. Dodd, M. A. Nielsen, M. J. Bremner, and R. T. Thew, PRA 65, 040301(R) (2002)
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1 - Introduction to DAQC

Digital-analog quantum computing (DAQC):

Combine digital single-qubit gates and analog blocks

UDAQC =
∏

k USQGe
−itkHS

This allows us to:

Take advantage of the flexibility of digital quantum computing

Maintain the robustness against noise of analog quantum computing
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2 - Digital-analog schedules
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2 - Digital-analog schedules

For simplicity, let’s use ZZ Hamiltonians

HS =
N∑
i<j

hi ,jσ
z
i σ

z
j ,

HP =
N∑
i<j

gi ,jσ
z
i σ

z
j .

Objective,

e−iTHP =
∏
k

U†
ke

−itkHSUk .

A. Parra Rodriguez, P. Lougovski, L. Lamata, E. Solano, and M. Sanz, PRA 101, 022305 (2020)
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2 - Digital-analog schedules

Flip the effective sign of the couplings with Pauli gates

For ZZ Hamiltonians,

σx
i e

−itσz
i σ

z
j σx

i = e−itσx
i σ

z
i σ

z
j σ

x
i = e itσ

z
i σ

z
j .
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2 - Digital-analog schedules

If HS ∝ HP the schedule is trivial. Else,

e−iTHP =
∏
k

U†
ke

−itkHSUk =
∏
k

e−itkH
(k)
S = exp

(
−i
∑
k

tkH
(k)
S

)
,

which is equivalent to

M


t1
t2
...
tK

 = T


h1,2/g1,2
h1,3/g1,3

...
hN−1,N/gN−1,N

 ,M ∈ {±1}

M has the information about the effective signs of the couplings at each block.
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2 - Digital-analog schedules

We assumed a perfect setup


Instantaneous SQGs

OR

Ability to turn on and off the interactions on-demand

stepwise-DAQC (sDQAC)
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2 - Digital-analog schedules

We assumed a perfect setup


Instantaneous SQGs

OR

Ability to turn on and off the interactions on-demand

stepwise-DAQC (sDQAC) banged-DAQC (bDAQC)
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2 - Digital-analog schedules

Banging error:

UIdeal = UsDAQC =
∏
k

e−itkHSUk =
∏
k

e−itkHS e−itSQGH
(k)
SQG

≈ UbDAQC =
∏
k

e−i(tk−tSQG )HS e
−itSQG

(
H

(k)
SQG+HS

)

For the error to be negligible, tSQG ≪ min(tk).
(usually is enough if 102tSQG ≲ min(tk))
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3 - Arbitrary two-body Hamiltonians (New!)
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3 - Arbitrary two-body Hamiltonians

We wish to work with general two-body Hamiltonians

H =
∑
i ,j

∑
µ,ν∈{x ,y ,z}

hµ,νi ,j σ
µ
i σ

ν
j .

Before, we had to options to work with arbitrary two-body Hamiltonians:

Use expensive term-by-term decompositions1

Optimize specific cases by hand2

Can we develop a systematic procedure for solving this problem?

1A. Parra Rodriguez, P. Lougovski, L. Lamata, E. Solano, and M. Sanz, PRA 101, 022305 (2020)
2T. Gonzalez-Raya, R. Asensio-Perea, A. Martin, et al., PRX Quantum 2, 020328 (2021)
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3 - Arbitrary two-body Hamiltonians
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3 - Arbitrary two-body Hamiltonians

By paying a Trotterization error, we treat
each possible interaction in the Pauli basis
individually.

∏
k

e−itkH
(k)
S ≈ e−i

∑
k tkH

(k)
S

We build a valid DAQC schedule by using
combinations of all Pauli gates.
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3 - Arbitrary two-body Hamiltonians

This was made assuming that all the interactions
we want to simulate σµ

i σ
ν
j appear on the source

Hamiltonian.

Else,

“Spray’n’pray”, apply uniformly random single
qubit gates.

Optimize the rotation gates by using a tensor
network proxy.
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4 - Stability of DAQC (New!)
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4 - Stability of DAQC

Noise sources:

SQG errors

Timing errors

Bit-flip

Decoherence

Dephasing

QFT over a family of states

|Ψ(β)⟩ = sinβ |WN⟩+ cosβ |GHZN⟩

P. Garcia Molina et al. “Noise in Digital and Digital-Analog Quantum Computation”,
arXiv:2107.12969(2021)
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4 - Stability of DAQC

We are interested in studying how DAQC scales with the number of qubits.

Informal definition:
A quantum simulation task is stable if the error committed when measuring a

local observable depends on the error parameter but doesn’t grow with the number of
particles.

ε = f (δ), ε ̸= f (δ,N)

An analogue quantum simulation task on spin systems is stable for local* Hamiltonians.

R. Trivedi, A. Franco Rubio, J. Ignacio Cirac, arXiv:2212.04924 (2022)
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4 - Stability of DAQC

Since SQGs have a very high fidelity, we focus on errors on the source Hamiltonian

HS,meas −→ HS ,real = HS ,meas + Hδ.

This induces certain deviation to the simulated Hamiltonian

HP −→ HP,real = HP + Hε.
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4 - Stability of DAQC

Since SQGs have a very high fidelity, we focus on errors on the source Hamiltonian, in
particular calibration errors

HS,meas −→ HS ,real = HS ,meas + Hδ.

This induces certain deviation to the simulated Hamiltonian

HP −→ HP,real = HP + Hε.
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4 - Stability of DAQC

If the Hamiltonian is sufficiently local*, the simulation with DAQC is stable.

ε ≲ 4mT δdeg(P)∥hP ⊘ hS∥∞ + 4mδdeg(D\S)tA,

m number of measured qubits, T simulation time, tA total time.
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4 - Stability of DAQC

We can redesign our DAQC circuit to mitigate errors outside the problem (∼DD)

ε ≲ 4mT δdeg(P)∥hP ⊘ hS∥∞.

A. Ahedo, M. Garcia de Andoin, M. Sanz, in preparation
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5 - Conclusions

Key points of digital-analog:

Digital-analog is universal

Using only SQGs makes it more noise resilient

Can achieve faster circuit times
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5 - Conclusions

Future works:

Bounds for tA

Experimental implementations

Qudit digital-analog
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Thank you!

Try DAQC yourself! github.com/NQUIRE-Center/DAQC simulator

Contact: mikelgda@gmail.com �, @mgarciadeandoin X
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Practical experimentation

There are already successful experiments employing DAQC

Quantum Neural Networks
experiments on the
Zuchongzhi hardware

M. Gong, H.-L. Huang, S. Wang, C. Guo, S. Li, . . . , and J.-W. Pan, arXiv:2201.05957 (2022)
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DAQC platforms

Superconducting circuits

Trapped ions

Rydberg atoms

Liquid state NMR setups

. . .

H =
ω1

2
σz
1 +Ω1 cos(ω

rf
1 t + ϕ1)σ

x
1

+
ω2

2
σz
2 +Ω2 cos(ω

rf
2 t + ϕ2)σ

x
2

+
ωxx

2
σx
1σ

x
2 .

→· · · → Heff
QF ∼ ωxxσ

x
1σ

x
2

G.S. Paraoanu, PRB 74, 140504(R) (2006). C. Rigetti, and M. Devoret, PRB 81, 134507 (2010).
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Arbitrary connectivity

Simulation of dynamics of arbitrary Hamiltonians on an arbitrary system:

If the connectivity graph of HP doesn’t match the one in HS we need to
implement SWAP strategies (really hard).

?

A. Galicia, B. Ramon, E. Solano, and M. Sanz, PRR 2, 033103 (2020)
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Other works
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2 - Digital-analog schedules (example)

We want to simulate a ZZ-Ising Hamiltonian for a time T=1, with another ZZ-Ising
Hamiltonian.

Figure: Source Hamiltonian (HS) Figure: Problem Hamiltonian (HP)

HS = 1σz
1σ

z
2 + 2σz

1σ
z
3 − 2σz

2σ
z
3 ,

HP = 1σz
1σ

z
2 + 2σz

1σ
z
3 + 4σz

2σ
z
3 ,
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2 - Digital-analog schedules (example)

By sandwiching an X gate to a single qubit, we can change the effective sign of the
couplings connected to it.

Figure: Sandwich block with X gate on qubit 3 Figure: Effective Hamiltonian (H
(k)
S )
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2 - Digital-analog schedules (example)

Run all possible combinations of SQGs to obtain

M =

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


Find the times for the analog blocks.

1 −1 −1 1
1 −1 1 −1
1 1 −1 −1



t1
t2
t3
t4

 =

h1,2/g1,2
h1,3/g1,3
h2,3/g2,3

 =

 1/1 = 1
2/2 = 1

4/− 2 = −2


We want to minimize the total time of the circuit, and the times to be positive

min
t⃗

∑
k

tk ⊕ M · t⃗ = T ⃗h/g & tk ≥ 0 ∀k
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2 - Digital-analog schedules (example)

The solution to this problem is

t1 = 1, t2 = 0, t3 = 1.5, t4 = 1.5.

e−it1HS e−it3HS e−it4HSX X

X X

Figure: DAQC circuit for simulating HP for T=1 with HS .
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4 - Stability of DAQC

Time optimal: eliminate non existent couplings1 −1 −1 1
1 −1 1 −1

�1 �1 ��−1 ��−1



t1
t2
t3
t4

 = T

h1,2/g1,2
h1,3/g1,3

�
�0/0


Error mitigated: set non existent couplings to 0 (cost extra circuit time)1 −1 −1 1

1 −1 1 −1
1 1 −1 −1



t1
t2
t3
t4

 = T

h1,2/g1,2
h1,3/g1,3
0/0 = 0




