Activation of metrologically useful genuine multipartite entanglement New J. Phys. 26 023034 (2024)

<u>Róbert Trényi</u>^{1,2,3,4}, Árpád Lukács^{1,5,4}, Paweł Horodecki^{6,7}, Ryszard Horodecki⁶, Tamás Vértesi⁸, and Géza Tóth^{1,2,3,9,4}

¹ Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
²EHU Quantum Center, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Biscay, Spain
³Donostia International Physics Center (DIPC), San Sebastián, Spain
⁴ HUN-REN Wigner Research Centre for Physics, Budapest, Hungary
⁵Department of Mathematical Sciences, Durham University, Durham, United Kingdom
⁶International Centre for Theory of Quantum Technologies, University of Gdańsk, Gdańsk, Poland
⁷Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdańsk University of Technology, Gdańsk, Poland
⁸Institute for Nuclear Research, Hungarian Academy of Sciences, Durham, University, Of Sciences, Durham, University of Sciences, Durham, University of Technology, Gdańsk, Poland

ReAQCT 2024, Bosch Innovation Campus, Budapest, Hungary 19 June 2024

Róbert Trényi (UPV Bilbao, Wigner FK)

Motivation

• Quantum metrology

2 Improving metrological performance

- Taking many copies
- Embedding into higher dimension

Motivation

• Quantum metrology

2 Improving metrological performance

- Taking many copies
- Embedding into higher dimension

Basic task in quantum metrology

Linear interferometer Quantum measurement
$$\mathcal{Q} \Rightarrow \underbrace{U_{\theta} = \exp(-i\mathcal{H}\theta)}_{U_{\theta}} \Rightarrow \underbrace{U_{\theta} \, \varrho U_{\theta}^{\dagger}}_{\theta} \Rightarrow \underbrace{\text{Estimation of } \theta}$$

• ${\mathcal H}$ is *local*, that is,

$$\mathcal{H}=h_1+\cdots+h_N,$$

where h_n 's are single-subsystem operators of the *N*-partite system.

Basic task in quantum metrology

• \mathcal{H} is *local*, that is,

$$\mathcal{H}=h_1+\cdots+h_N,$$

where h_n 's are single-subsystem operators of the *N*-partite system.

• Cramér-Rao bound:

$$(\Delta heta)^2 \geq rac{1}{\mathcal{F}_{\mathcal{Q}}[arrho,\mathcal{H}]},$$

where the quantum Fisher information is

$$\mathcal{F}_{Q}[\varrho,\mathcal{H}] = 2\sum_{k,l} \frac{(\lambda_{k} - \lambda_{l})^{2}}{\lambda_{k} + \lambda_{l}} |\langle k|\mathcal{H}|l\rangle|^{2},$$

with $\rho = \sum_{k} \lambda_{k} |k\rangle \langle k|$ being the eigendecomposition.

Scaling properties of the quantum Fisher information

- General derivations yield: [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]
 - The maximum for separable states (shot-noise scaling)

[L. Pezzé and A. Smerzi, PRL 102, 100401 (2009)] [P. Hyllus et al., PRA 82, 012337 (2010)] $\mathcal{F}_Q[\varrho, \mathcal{H}] \sim N \xrightarrow{\mathrm{Cram\acute{e}r-Rao}} (\Delta \theta)^2 \sim 1/N$

• The maximum for entangled states (Heisenberg scaling) $\mathcal{F}_{\Omega}[\rho, \mathcal{H}] \sim N^2 \xrightarrow{\text{Cramér-Rao}} (\Delta \theta)^2 \sim 1/N^2$

- General derivations yield: [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)]
 - The maximum for separable states (shot-noise scaling)

[L. Pezzé and A. Smerzi, PRL 102, 100401 (2009)] [P. Hyllus et al., PRA 82, 012337 (2010)] $\mathcal{F}_Q[\varrho, \mathcal{H}] \sim N \xrightarrow{\mathrm{Cram\acute{e}r-Rao}} (\Delta \theta)^2 \sim 1/N$

- The maximum for entangled states (Heisenberg scaling) $\mathcal{F}_{Q}[\varrho, \mathcal{H}] \sim N^{2} \xrightarrow{\operatorname{Cram\acute{e}r-Rao}} (\Delta \theta)^{2} \sim 1/N^{2}$
- $\mathcal{F}_Q[\varrho, c\mathcal{H}] = |c|^2 \mathcal{F}_Q[\varrho, \mathcal{H}] \to \text{normalization is required}$

The metrological gain for characterizing usefulness

• For a given ϱ and a *local* Hamiltonian $\mathcal{H} = h_1 + \cdots + h_N$

 $g_{\mathcal{H}}(\varrho) = \frac{\mathcal{F}_Q[\varrho, \mathcal{H}]}{\mathcal{F}_Q^{(\text{sep})}(\mathcal{H})}, \quad \stackrel{\leftarrow}{\leftarrow} \begin{array}{l} \text{Performance of } \varrho \text{ with } \mathcal{H} \\ \leftarrow \begin{array}{l} \text{Best performance of all} \\ separable \text{ states with } \mathcal{H} \end{array}$

where the separable limit is

$$\mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H}) = \sum_{n=1}^N [\sigma_{\max}(h_n) - \sigma_{\min}(h_n)]^2.$$

The metrological gain for characterizing usefulness

• For a given ϱ and a *local* Hamiltonian $\mathcal{H} = h_1 + \cdots + h_N$

 $g_{\mathcal{H}}(\varrho) = \frac{\mathcal{F}_Q[\varrho, \mathcal{H}]}{\mathcal{F}_Q^{(\text{sep})}(\mathcal{H})}, \quad \stackrel{\leftarrow}{\leftarrow} \begin{array}{l} \text{Performance of } \varrho \text{ with } \mathcal{H} \\ \leftarrow \begin{array}{l} \text{Best performance of all} \\ separable \text{ states with } \mathcal{H} \end{array}$

where the separable limit is

$$\mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = \sum_{n=1}^N [\sigma_{\max}(h_n) - \sigma_{\min}(h_n)]^2.$$

If $\sigma_{\max/\min}(h_n) = \pm 1 \rightarrow \mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = 4N$
 $\bullet \max \mathcal{F}_Q[\varrho, \mathcal{H}] = 4N^2$ for some entangled ϱ with a local \mathcal{H} .

The metrological gain for characterizing usefulness

• For a given ϱ and a *local* Hamiltonian $\mathcal{H} = h_1 + \cdots + h_N$

 $g_{\mathcal{H}}(\varrho) = \frac{\mathcal{F}_{Q}[\varrho, \mathcal{H}]}{\mathcal{F}_{Q}^{(\text{sep})}(\mathcal{H})}, \quad \stackrel{\leftarrow}{\leftarrow} \begin{array}{l} \text{Performance of } \varrho \text{ with } \mathcal{H} \\ \leftarrow \begin{array}{l} \text{Best performance of all} \\ separable \text{ states with } \mathcal{H} \end{array}$

where the separable limit is

$${\mathcal F}_Q^{(\mathrm{sep})}({\mathcal H}) = \sum_{n=1}^N [\sigma_{\mathsf{max}}(h_n) - \sigma_{\mathsf{min}}(h_n)]^2.$$

If $\sigma_{\max/\min}(h_n) = \pm 1 \rightarrow \mathcal{F}_Q^{(\text{sep})}(\mathcal{H}) = 4N$ $\bullet \max \mathcal{F}_Q[\varrho, \mathcal{H}] = 4N^2$ for some entangled ϱ with a local \mathcal{H} .

• $g_{\mathcal{H}}(\varrho)$ can be maximized over *local* Hamiltonians [G. Tóth et al., PRL 125, 020402 (2020)]

$$g(\varrho) = \max_{\mathrm{local}\mathcal{H}} g_{\mathcal{H}}(\varrho).$$

• If $g(\varrho) > 1$ then the state is useful metrologically.

Róbert Trényi (UPV Bilbao, Wigner FK)

The metrological gain witnesses multipartite entanglement

- Fully-separable states $\rightarrow g \leq 1$ (shot-noise scaling).
- Entanglement is required for usefulness but not all entangled states are useful.
- PPT entangled states can be useful. [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]

The metrological gain witnesses multipartite entanglement

- Fully-separable states $\rightarrow g \leq 1$ (shot-noise scaling).
- Entanglement is required for usefulness but not all entangled states are useful.
- PPT entangled states can be useful. [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]
- g identifies different levels of multipartite entanglement.
- $g > k \rightarrow$ metrologically useful (k + 1)-partite entanglement.
- $g > N 1 \rightarrow$ metrologically useful N-partite/genuine multipartite entanglement (GME).
- $g = N \ (\mathcal{F}_Q = 4N^2)$ is the maximal usefulness (Heisenberg scaling).

The metrological gain witnesses multipartite entanglement

- Fully-separable states $\rightarrow g \leq 1$ (shot-noise scaling).
- Entanglement is required for usefulness but not all entangled states are useful.
- PPT entangled states can be useful. [G. Tóth and T. Vértesi, PRL 120, 020506 (2018)]
- g identifies different levels of multipartite entanglement.
- $g > k \rightarrow$ metrologically useful (k + 1)-partite entanglement.
- $g > N 1 \rightarrow$ metrologically useful N-partite/genuine multipartite entanglement (GME).
- $g = N \ (\mathcal{F}_Q = 4N^2)$ is the maximal usefulness (Heisenberg scaling).
- There are non-useful GME states [P. Hyllus et al., PRA 82, 012337 (2010)]
- What kind of entangled states can be made useful with extended techniques?

Motivation

• Quantum metrology

2 Improving metrological performance

- Taking many copies
- Embedding into higher dimension

Multicopy scheme with interaction between the copies

The single-subsystem operators h_n 's act between the copies:

Multicopy scheme with interaction between the copies

The single-subsystem operators h_n 's act between the copies:

Multicopy scheme with interaction between the copies

The single-subsystem operators h_n 's act between the copies:

The gain can be improved $g(arrho^{\otimes M})>g(arrho)!$ [G. Tóth et al., PRL 125, 020402 (2020)]

Róbert Trényi (UPV Bilbao, Wigner FK)

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

The maximum is attained exponentially fast with the number of copies.

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

The maximum is attained exponentially fast with the number of copies.

$$\begin{split} \varrho &= \sum_{k,l=0}^{d-1} c_{kl} (|k\rangle \langle l|)^{\otimes N} \\ h_n &= D^{\otimes M}, \text{ for } 1 \leq n \leq N \\ D &= \text{diag}(+1, -1, +1, -1, ...) \\ \text{for qubits} &\to D = \sigma_z, \text{ and } h_n = \sigma_z^{\otimes M} \end{split}$$

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

The maximum is attained exponentially fast with the number of copies.

$$\varrho = \sum_{k,l=0}^{d-1} c_{kl}(|k\rangle\langle l|)^{\otimes N}$$

$$h_n = D^{\otimes M}, \text{ for } 1 \leq n \leq N$$

$$D = \text{diag}(+1, -1, +1, -1, ...)$$
for qubits $\rightarrow D = \sigma_z$, and $h_n = \sigma_z^{\otimes M}$

$$\overset{N}{=} \frac{d_1}{d_1} A_2 A_n A_N$$

$$\overset{N}{=} \frac{d_1}{d_1} A_2 A_N$$

$$\overset{N}{=} \frac{d_1}{d_1} A_2$$

$$\mathcal{H} = \mathbf{h}_1 + \mathbf{h}_2 + \dots + \mathbf{h}_n + \dots + \mathbf{h}_N$$

Al manthian

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

Al manthian

 $\mathcal{H} = h_1 + \frac{h_2}{h_2} + \cdots + h_n + \cdots + h_N$

The maximum is attained exponentially fast with the number of copies.

$$\varrho = \sum_{k,l=0}^{d-1} c_{kl}(|k\rangle\langle l|)^{\otimes N}$$

$$h_n = D^{\otimes M}, \text{ for } 1 \leq n \leq N$$

$$D = \text{diag}(+1, -1, +1, -1, ...)$$
for qubits $\rightarrow D = \sigma_z$, and $h_n = \sigma_z^{\otimes M}$

$$\overset{N}{=} \frac{d_1}{D} \cdots \underbrace{1}_{n} \cdots \underbrace{1}_{n}$$

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

The maximum is attained exponentially fast with the number of copies.

$$\varrho = \sum_{k,l=0}^{d-1} c_{kl}(|k\rangle\langle l|)^{\otimes N}$$

$$h_n = D^{\otimes M}, \text{ for } 1 \leq n \leq N$$

$$D = \text{diag}(+1, -1, +1, -1, ...)$$
for qubits $\rightarrow D = \sigma_z$, and $h_n = \sigma_z^{\otimes M}$

$$\overset{N}{=} \frac{d_1}{1} \cdots \frac{d_n}{2} \xrightarrow{A_n} \xrightarrow{A_n$$

....

Result

Entangled states of $N \ge 2$ qudits of dimension d are maximally useful in the infinite copy limit if they live in the subspace

$$\{ \ket{0..0}, \ket{1..1}, ..., \ket{d-1, .., d-1} \}.$$

The maximum is attained exponentially fast with the number of copies.

$$\varrho = \sum_{k,l=0}^{d-1} c_{kl}(|k\rangle\langle l|)^{\otimes N}$$

$$h_n = D^{\otimes M}, \text{ for } 1 \leq n \leq N$$

$$D = \text{diag}(+1, -1, +1, -1, ...)$$
for qubits $\rightarrow D = \sigma_z$, and $h_n = \sigma_z^{\otimes M}$

$$\overset{N}{=} \frac{d_1}{d_1} \stackrel{A_2}{\longrightarrow} \stackrel{A_n}{\longrightarrow} \stackrel{A_N}$$

Al manthian

Examples

٠

The state with
$$|\text{GHZ}_N\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$$

 $\varrho_N(p) = p |\text{GHZ}_N\rangle\langle\text{GHZ}_N| + (1-p)\frac{(|0\rangle\langle 0|)^{\otimes N} + (|1\rangle\langle 1|)^{\otimes N}}{2}.$

Examples

Examples

$$|\text{GHZ}\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$
 with $\mathcal{H} = h_1 + h_2 + h_3$, where $h_n = \sigma_z$ so $\mathcal{H} = \sigma_z^{(1)} + \sigma_z^{(2)} + \sigma_z^{(3)}$.

For M = 1 copy:

$$\begin{array}{lll} \mathcal{F}_Q[\left|\mathrm{GHZ}\right\rangle,\mathcal{H}] &=& 36 = 4 N^2 \,(\mathrm{maximal}), \\ \mathcal{F}_Q[\varrho,\mathcal{H}] &<& 36, \end{array}$$

with

$$\varrho = \rho \left| \mathrm{GHZ} \right\rangle \! \left\langle \mathrm{GHZ} \right| + (1 - \rho) \left| \mathrm{GHZ}_{\phi} \right\rangle \! \left\langle \mathrm{GHZ}_{\phi} \right|,$$

where $|\text{GHZ}_{\phi}
angle = rac{1}{\sqrt{2}}(|000
angle + e^{-i\phi} |111
angle).$

- So ρ is a mixture of $|GHZ\rangle$ and the phase-error affected $|GHZ\rangle$.
- For 1 copy, the quantum Fisher information decreases if there is a phase-error.

Tolerating phase noise for N = 3, M = 3 copies

$$|\text{GHZ}\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$
 with $\mathcal{H} = h_1 + h_2 + h_3$, where $h_n = \sigma_z^{\otimes M}$.

For M = 3 copies:

$$\begin{split} \mathcal{F}_Q[|\mathrm{GHZ}\rangle\otimes|\mathrm{GHZ}\rangle\otimes|\mathrm{GHZ}\rangle\,,\mathcal{H}] &= 36 = 4N^2\,(\mathrm{maximal}),\\ \mathcal{F}_Q[\varrho,\mathcal{H}] &= 36, \end{split}$$

where ρ is some mixture of states with phase-error on at most 1 copy:

$$\begin{split} |\text{GHZ}\rangle \otimes |\text{GHZ}\rangle \otimes |\text{GHZ}\rangle \,, \\ |\text{GHZ}_{\phi_1}\rangle \otimes |\text{GHZ}\rangle \otimes |\text{GHZ}\rangle \,, \\ |\text{GHZ}\rangle \otimes |\text{GHZ}_{\phi_2}\rangle \otimes |\text{GHZ}\rangle \,, \\ |\text{GHZ}\rangle \otimes |\text{GHZ}\rangle \otimes |\text{GHZ}_{\phi_2}\rangle \,. \end{split}$$

- For 3 copies, the quantum Fisher information stays maximal if there is a phase-error on at most 1 copy.
- Adding more copies protects against phase-error on 1 copy.

Róbert Trényi (UPV Bilbao, Wigner FK)

Motivation

• Quantum metrology

Improving metrological performance Taking many copies

• Embedding into higher dimension

Embedding "GHZ"-like states can make them useful

Result

All entangled pure states of the form

$$\sum_{k=0}^{d-1} \sigma_k \, |k\rangle^{\otimes N}$$

with $\sum_k |\sigma_k|^2 = 1$ are useful for $d \ge 3$ and $N \ge 3$.

Embedding "GHZ"-like states can make them useful

Result

All entangled pure states of the form

$$\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}$$

with $\sum_k |\sigma_k|^2 = 1$ are useful for $d \ge 3$ and $N \ge 3$.

• The state for $N \ge 3$ with d = 2

$$\ket{\psi} = \sigma_0 \ket{0}^{\otimes N} + \sigma_1 \ket{1}^{\otimes N}$$

is useful if $1/N < 4 |\sigma_0 \sigma_1|^2$ [P. Hyllus et al., PRA 82, 012337 (2010)].

Embedding "GHZ"-like states can make them useful

Result

All entangled pure states of the form

$$\sum_{k=0}^{d-1} \sigma_k \ket{k}^{\otimes N}$$

with $\sum_k |\sigma_k|^2 = 1$ are useful for $d \ge 3$ and $N \ge 3$.

• The state for $N \ge 3$ with d = 2

$$\ket{\psi} = \sigma_0 \ket{0}^{\otimes N} + \sigma_1 \ket{1}^{\otimes N}$$

is useful if $1/N < 4 |\sigma_0 \sigma_1|^2$ [P. Hyllus et al., PRA 82, 012337 (2010)].

• But with d = 3

$$\left|\psi'\right\rangle=\sigma_{\mathbf{0}}\left|\mathbf{0}\right\rangle^{\otimes \textit{N}}+\sigma_{\mathbf{1}}\left|\mathbf{1}\right\rangle^{\otimes \textit{N}}+\mathbf{0}\left|\mathbf{2}\right\rangle^{\otimes \textit{N}}$$

is always useful.

• The non-useful $|\psi
angle$, embedded into $d=3\;(|\psi'
angle)$ becomes useful.

Conclusions

- Investigated the metrological performance of quantum states in the multicopy scenario.
- Identified a subspace in which metrologically useful GME activation is possible.
- Also improved metrological performance by embedding.

See New J. Phys. 26 023034 (2024)! Thank you for the attention!

• In the limit of many copies $(M \gg 1)$

$$\mathcal{F}_Q[\varrho_N(p)^{\otimes M},\mathcal{H}] = 4N^2 \implies (\Delta \theta)^2 \ge 1/\mathcal{F}_Q[\varrho_N(p)^{\otimes M},\mathcal{H}] = 1/4N^2$$

• In the limit of many copies $(M \gg 1)$

$${\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=4{\mathcal N}^2 \implies (\Delta heta)^2\geq 1/{\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=1/4{\mathcal N}^2$$

• Can we actually reach this limit with simple measurements?

• In the limit of many copies $(M \gg 1)$

$${\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=4{\mathcal N}^2 \implies (\Delta heta)^2\geq 1/{\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=1/4{\mathcal N}^2$$

- Can we actually reach this limit with simple measurements?
- Measuring in the eigenbasis of \mathcal{M} (error propagation formula):

$$(\Delta heta)^2_{\mathcal{M}} = rac{(\Delta \mathcal{M})^2}{|\partial_ heta \langle \mathcal{M}
angle|^2} = rac{(\Delta \mathcal{M})^2}{\langle i [\mathcal{M}, \mathcal{H}]
angle^2}.$$

• In the limit of many copies $(M \gg 1)$

$${\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=4{\mathcal N}^2 \implies (\Delta heta)^2\geq 1/{\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=1/4{\mathcal N}^2$$

- Can we actually reach this limit with simple measurements?
- Measuring in the eigenbasis of \mathcal{M} (error propagation formula):

$$(\Delta heta)^2_{\mathcal{M}} = rac{(\Delta \mathcal{M})^2}{|\partial_ heta \langle \mathcal{M}
angle|^2} = rac{(\Delta \mathcal{M})^2}{\langle i [\mathcal{M}, \mathcal{H}]
angle^2}.$$

• For *M* copies of $\rho_N(p)$ we constructed a simple \mathcal{M} such that

$$(\Delta heta)^2_{\mathcal{M}} = rac{1+(M-1)p^2}{4MN^2p^2}$$

• In the limit of many copies $(M \gg 1)$

$${\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=4{\mathcal N}^2 \implies (\Delta heta)^2\geq 1/{\mathcal F}_Q[arrho_{\mathcal N}({\pmb p})^{\otimes M},{\mathcal H}]=1/4{\mathcal N}^2$$

- Can we actually reach this limit with simple measurements?
- Measuring in the eigenbasis of \mathcal{M} (error propagation formula):

$$(\Delta heta)^2_{\mathcal{M}} = rac{(\Delta \mathcal{M})^2}{|\partial_ heta \langle \mathcal{M}
angle|^2} = rac{(\Delta \mathcal{M})^2}{\langle i [\mathcal{M}, \mathcal{H}]
angle^2}.$$

• For *M* copies of $\rho_N(p)$ we constructed a simple \mathcal{M} such that

$$(\Delta heta)^2_{\mathcal{M}}=rac{1+(M-1)p^2}{4MN^2p^2}$$

• For M = 2 copies of $\rho_3(p)$

 $\mathcal{M} = \sigma_y \otimes \sigma_y \otimes \sigma_y \otimes \sigma_z \otimes \mathbb{1} \ \otimes \mathbb{1} + \sigma_z \otimes \mathbb{1} \ \otimes \mathbb{1} \ \otimes \sigma_y \otimes \sigma_y \otimes \sigma_y$

Róbert Trényi (UPV Bilbao, Wigner FK)

States outside the previous subspace

• For N = 3 with the states

$$egin{aligned} |W
angle &=rac{1}{\sqrt{3}}(|100
angle+|010
angle+|001
angle)\ |\overline{W}
angle &=rac{1}{\sqrt{3}}(|011
angle+|101
angle+|110
angle) \end{aligned}$$

• Using the numerical optimization for $g(\varrho)$ [G. Tóth et al., PRL 125, 020402 (2020)].

with

$$\begin{split} \varrho(p,q,r) &= p \left| \mathrm{G}HZ_q \right\rangle \langle \mathrm{G}HZ_q \right| + (1-p) [r(|0\rangle\langle 0|)^{\otimes N} + (1-r)(|1\rangle\langle 1|)^{\otimes N}], \\ & |\mathrm{G}HZ_q \rangle = \sqrt{q} \left| 000..00 \right\rangle + \sqrt{1-q} \left| 111..11 \right\rangle, \end{split}$$

The following operator, being the sum of M correlation terms

$$\mathcal{M} = \sum_{m=1}^{M} Z^{\otimes (m-1)} \otimes Y \otimes Z^{\otimes (M-m)},$$

where we define the operators acting on a single copy

$$Y = \begin{cases} \sigma_y^{\otimes N} & \text{for odd } N, \\ \sigma_x \otimes \sigma_y^{\otimes (N-1)} & \text{for even } N, \end{cases}$$
$$Z = \sigma_z \otimes \mathbb{1}^{\otimes (N-1)}.$$
$$(\Delta \theta)_{\mathcal{M}}^2 = \frac{1/[4q(1-q)] + (M-1)p^2}{4MN^2p^2}.$$

White noise

Observation

Full-rank states of N qudits cannot be maximally useful in the infinite copy limit.

• Example: Isotropic state of two qubits

$$p^{(p)}=p\left|\Psi_{\mathrm{me}}
ight
angle \! \left\langle \Psi_{\mathrm{me}}
ight|+(1-p)\mathbb{1}/2^{2},$$

where $|\Psi_{\rm me}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$ • $\rho^{(0.75)}$ (top 3 curves) and $\rho^{(0.35)}$ (bottom 3 curves). $h_n = \sigma_z^{\otimes M}$.

 $4(\Delta \mathcal{H})^2 \geq \mathcal{F}_{Q}[\varrho, \mathcal{H}] \geq 4I_{\varrho}(\mathcal{H})$

Embedding mixed states

• Embedding the noisy GHZ state

Figure: The metrological gain for the state $\varrho_3^{(p)}$ (dashed), embedded into d = 3 (left), d = 4 (right).

Embedding mixed states

• Embedding the noisy GHZ state

Figure: The metrological gain for the state $\varrho_3^{(p)}$ (dashed), embedded into d = 3 (left), d = 4 (right).

- $\rho_3^{(p)}$ is genuine multipartite entangled for p > 0.428571 [SM Hashemi Rafsanjani et al., PRA 86, 062303 (2012)].
- $\varrho_3^{(p)}$ is useful metrologically for p > 0.439576.

Róbert Trényi (UPV Bilbao, Wigner FK)

Error propagation formula

 \bullet Measuring in the eigenbasis of ${\cal M}$ we get:

Figure from [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)].

Error propagation formula

 $\bullet\,$ Measuring in the eigenbasis of ${\cal M}$ we get:

Figure from [G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014)].

 \bullet From the Cramér-Rao bound it follows that for any ${\cal M}$

$$rac{(\Delta \mathcal{M})^2}{\langle i[\mathcal{M},\mathcal{H}]
angle^2} = (\Delta heta)^2_{\mathcal{M}} \geq rac{1}{\mathcal{F}_{\mathcal{Q}}[arrho,\mathcal{H}]}$$

Róbert Trényi (UPV Bilbao, Wigner FK)

Activating metrologically useful GME

- Used in [G. Tóth et al., PRL 125, 020402 (2020)].
- Minimizing $(\Delta \theta)_{\mathcal{M}}^2 = \frac{(\Delta \mathcal{M})^2}{\langle i[\mathcal{M},\mathcal{H}] \rangle^2} \geq \frac{1}{\mathcal{F}_{\mathcal{Q}}[\varrho,\mathcal{H}]}$ with constraints $c_n \mathbf{1} \pm h_n \geq 0$.
- For given *ρ* and *H* = *h*₁ + *h*₂ the symmetric logarithmic derivate gives the optimum

$$\mathcal{M}_{opt} = 2i \sum_{k,l} \frac{\lambda_k - \lambda_l}{\lambda_k + \lambda_l} |k\rangle \langle l| \langle k|\mathcal{H}|l\rangle$$

Scheme without interaction between copies

Consider *M* copies of an *N*-partite state ρ , all undergoing a dynamics governed by the same Hamiltonian *h*:

Scheme without interaction between copies

Consider *M* copies of an *N*-partite state ρ , all undergoing a dynamics governed by the same Hamiltonian *h*:

$$\mathcal{F}_Q[\varrho^{\otimes M}, h^{\otimes M}] = M \mathcal{F}_Q[\varrho, h],$$

but the separable maximum also increases

$$\mathcal{F}_Q^{(\mathrm{sep})}(h^{\otimes M}) = M \mathcal{F}_Q^{(\mathrm{sep})}(h).$$

So the gain remains the same

$$g_{h^{\otimes M}}(\varrho^{\otimes M}) = g_h(\varrho).$$

Scheme without interaction between copies

Consider *M* copies of an *N*-partite state ρ , all undergoing a dynamics governed by the same Hamiltonian *h*:

$$\mathcal{F}_Q[\varrho^{\otimes M}, h^{\otimes M}] = M \mathcal{F}_Q[\varrho, h],$$

but the separable maximum also increases

$$\mathcal{F}^{(\mathrm{sep})}_Q(h^{\otimes M}) = M \mathcal{F}^{(\mathrm{sep})}_Q(h).$$

So the gain remains the same

$$g_{h^{\otimes M}}(\varrho^{\otimes M}) = g_h(\varrho).$$

No improvement in the gain!

Consider the state

$$arrho_3(\mathbf{p}) = \mathbf{p} \left| \mathrm{GHZ}_3 \right| \left| \frac{1-\mathbf{p}}{2} \left(\left| 000 \right| \left| 000 \right| + \left| 111 \right| \right| 111 \right| \right),$$

with p = 0.8.

Consider the state

$$\varrho_3(p) = p |\text{GHZ}_3\rangle\langle\text{GHZ}_3| + \frac{1-p}{2} (|000\rangle\langle000| + |111\rangle\langle111|),$$

with p = 0.8.

• 1-copy:

$$\mathcal{F}_Q[\varrho_3(p),\mathcal{H}_{M=1}]=23.0400,$$

where $\mathcal{H}_{M=1} = \sigma_z^{(1)} + \sigma_z^{(2)} + \sigma_z^{(3)}$.

Consider the state

$$\varrho_3(p) = p |\text{GHZ}_3\rangle\langle\text{GHZ}_3| + \frac{1-p}{2} (|000\rangle\langle000| + |111\rangle\langle111|),$$

with p = 0.8.

• 1-copy:

$$\mathcal{F}_Q[\varrho_3(\boldsymbol{p}),\mathcal{H}_{M=1}]=23.0400,$$

where $\mathcal{H}_{M=1} = \sigma_z^{(1)} + \sigma_z^{(2)} + \sigma_z^{(3)}$.

• 2 copies:

 $\mathcal{F}_Q[\varrho_3(p)^{\otimes 2}, \mathcal{H}_{M=2}] = 28.0976,$ where $\mathcal{H}_{M=2} = \sigma_z^{(1)} \sigma_z^{(4)} + \sigma_z^{(2)} \sigma_z^{(5)} + \sigma_z^{(3)} \sigma_z^{(6)}.$

Consider the state

$$\varrho_3(p) = p |\text{GHZ}_3\rangle\langle\text{GHZ}_3| + \frac{1-p}{2} (|000\rangle\langle000| + |111\rangle\langle111|),$$

with p = 0.8.

• 1-copy:

$$\mathcal{F}_Q[\varrho_3(\boldsymbol{p}),\mathcal{H}_{M=1}]=23.0400,$$

where $\mathcal{H}_{M=1} = \sigma_z^{(1)} + \sigma_z^{(2)} + \sigma_z^{(3)}$.

• 2 copies:

 $\mathcal{F}_Q[\varrho_3(p)^{\otimes 2}, \mathcal{H}_{M=2}] = 28.0976,$ where $\mathcal{H}_{M=2} = \sigma_z^{(1)} \sigma_z^{(4)} + \sigma_z^{(2)} \sigma_z^{(5)} + \sigma_z^{(3)} \sigma_z^{(6)}.$

$$\mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H}_{M=1}) = \mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H}_{M=2}) = 12.$$