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Numerical simulations and verification on quantum computers
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® New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

® For a limited depth circuit the gradient-free optimization is more effective
® For complex cases with deeper circuits the derivative optimization has an advantage

o Effective implementation of the QCBM for quantum computer with parallel execution of
QCBM circuits.
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Quantum Circuit Born Machine Restricted Boltzmann Machine - base for QCBM

Restricted Boltzmann Machine

® Two layer classical neural network for
generative deep learning CITE, same as
QCBM serves as a generator for joint
probability distribution

Figure 1: Restricted Boltzman Machine as a two
layer neural network with a visible (white)
and a hidden (black) layer nodes CITE %
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Quantum Circuit Born Machine Restricted Boltzmann Machine - base for QCBM

Restricted Boltzmann Machine

® Two layer classical neural network for
generative deep learning CITE, same as
QCBM serves as a generator for joint
probability distribution

® Joint probability determined by the
Boltzmann distribution function

P(v. h) = eXp{—g(V, h)}

Figure 1: Restricted Boltzman Machine as a two
layer neural network with a visible (white)
and a hidden (black) layer nodes CITE %
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Quantum Circuit Born Machine What is a Quantum Circuit Born Machine

Quantum Circuit Born Machine

® Using the Born rule as a mean of
generating (probability)
distribution instead of relying of

L layers

Boltzman distribution
Is)y 4 B=(m0) | Ru(Bu) 4 (=
P(v,h) = <7>T th> .
’ B . ) |— = i
where Py p c.ienotes. measurement o, RN ) e
operator which fulfills
=1 .
Z"yh Pvn Figure 2: Schematic of a QCBM
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® For the case of PQC with

parameter vector @ this can be
rewritten as P = (¢|1g) %
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Test distribution
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Bechmarking of QCBM

Cost function for optimization algorithms

Total Variation (TV) Maximum Mean Discrepancy (MMD)

® Cost function formula
fTV(e) = fTV (Pmodel 0(55) Pyata (l'))

= Z ( model,0 (2 Pdata(@)

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free



e HeleE] I Tested gradient-free and derivative optimization methods

Cost function for optimization algorithms

Total Variation (TV) Maximum Mean Discrepancy (MMD)
® Cost function formula ® Cost function formula
frv(0) = frv (Pmodel, o(I) Pyata()) fump(0) = E [K(Pmodel,0; Pmodel,0)]
= Z < model, 0 ( Pdata(@) ~ 2B [K(Prmodet 0, Pdata)]

JFE {K(Pdata- Pdata)}
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e Kernel function

k
1 1

K(z,y) = ¢ > exp{——%_!w— yl
i=1 v
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Tested optimization algorithms

Gradient-free optimization Derivative optimization

® COBYLA optimizer e ADAM optimizer
® Low number of cost function evaluations
® Low noise resilience, higher number of
shots
® CMA-ES optimizer
® Allows for batch calculations
® Able to converge fast

Usage of first derivative

Batch calculation of gradient

Analytic gradient for MMD cost
Momentum can increase noise resilience
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e HeleE] I Tested gradient-free and derivative optimization methods

Tested optimization algorithms

Gradient-free optimization Derivative optimization
® COBYLA optimizer e ADAM optimizer
® |Low number of cost function evaluations ® Usage of first derivative
® Low noise resilience, higher number of ® Batch calculation of gradient
shots ® Analytic gradient for MMD cost
e CMA-ES optimizer ® Momentum can increase noise resilience

® Allows for batch calculations
® Able to converge fast

¢ Finding the relation between circuit depth and the learning result for each of the
optimization algorithms. %

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free June 17, 2024 8/14



SODIA Gl e el
Optimal depth for the COBYLA optimized QCBM

. Legend:
0.0005 1 Lagend, o data
=== Cost at circuit depth W model trained with COBYLA
0.06
0.0004
0.05 .
4 = 0.04
., 0.0003 2
1%}
2 5|
o Q
Eo.os
0.0002
0.02 N
o
. o
0.0001 B
B
0.01
“ . o L.
AL
oo L] i
1 2 3 4 5 6 7 8 -4 -3 -2 -1 0 1 2 3 4
Depth

Random variable x

Figure 4: The TV cost reached for different depths  Figure 5: Probability distribution with lowestgo
of the QCBM circuit with the COBYLA optimizer  generated with the COBYLA optimizer %
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Optimal depth for the CMA-ES optimized QCBM
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Optimal depth for the ADAM optimized QCBM
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Results of QCBM bechmarking

Plot TV and MMD cost during learning
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Conclusion

® Numerical results show the connection
between the depth of PQC and the

optimal choice of optimizer for learning. Open questions:

® QObserved similarity to learning of classical
RBM in the connection depth and optimal e Scaling the learning for larger PQC leads

learning method. to sampling problem.
® Cost functions, e.g. MMD, used in e Introduction of hints for the learning of
classical machine learning can be applied difficult distributions.

to quantum machine learning for
performance advantage.

® Tendency of QCBM to produce periodic
distributions. %
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Conclusion Results and open questions

Thank you for your attention

Figure 12: QR code leading to the project repository

QCBM learning video %
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