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Introduction Objectives of the project

Quantum generative machine learning and objectives of the work

• Quantum generative machine learning (QML) and parameterized quantum circuits (PQC)

• Generating samples from probability distributions
• PQC as a circuit for QML
• QCBM as a for of PQC with classical analogy

• Learning of PQC through optimization of parameters
• Optimization methods: derivative and gradient-free
• Comparison of methods with COBYLA, CMA-ES and ADAM optimizers
• Numerical simulations and verification on quantum computers
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Introduction Results of the project

Main results of the research

• New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

• For a limited depth circuit the gradient-free optimization is more effective
• For complex cases with deeper circuits the derivative optimization has an advantage

• Effective implementation of the QCBM for quantum computer with parallel execution of
QCBM circuits.

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free June 17, 2024 3 / 14



Introduction Results of the project

Main results of the research

• New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

• For a limited depth circuit the gradient-free optimization is more effective

• For complex cases with deeper circuits the derivative optimization has an advantage
• Effective implementation of the QCBM for quantum computer with parallel execution of

QCBM circuits.

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free June 17, 2024 3 / 14



Introduction Results of the project

Main results of the research

• New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

• For a limited depth circuit the gradient-free optimization is more effective
• For complex cases with deeper circuits the derivative optimization has an advantage

• Effective implementation of the QCBM for quantum computer with parallel execution of
QCBM circuits.

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free June 17, 2024 3 / 14



Introduction Results of the project

Main results of the research

• New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

• For a limited depth circuit the gradient-free optimization is more effective
• For complex cases with deeper circuits the derivative optimization has an advantage

• Effective implementation of the QCBM for quantum computer with parallel execution of
QCBM circuits.

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free June 17, 2024 3 / 14



Quantum Circuit Born Machine Restricted Boltzmann Machine - base for QCBM

Restricted Boltzmann Machine

• Two layer classical neural network for
generative deep learning CITE, same as
QCBM serves as a generator for joint
probability distribution

• Joint probability determined by the
Boltzmann distribution function

P(v, h) = exp{−E(v, h)}
Z

Figure 1: Restricted Boltzman Machine as a two
layer neural network with a visible (white)
and a hidden (black) layer nodes CITE
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Quantum Circuit Born Machine What is a Quantum Circuit Born Machine

Quantum Circuit Born Machine

• Using the Born rule as a mean of
generating (probability)
distribution instead of relying of
Boltzman distribution

P(v, h) =
⟨
P†

v,hPv,h
⟩
,

where Pv,h denotes measurement
operator which fulfills∑

v,h Pv,h = I

• For the case of PQC with
parameter vector θ this can be
rewritten as P = ⟨ϕ|ψθ⟩

L layers

...

|s⟩1 Rz(γ1l) Ry(β1l)

Cost function
evaluation

... Rz(γil) Ry(βil)

|s⟩n Rz(γnl) Ry(βnl)

Figure 2: Schematic of a QCBM
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Bechmarking of QCBM Test distribution

Test distribution

• Mixing of normal distributions

P(x) = 1
N

4∑
i=1

wi exp

{
−(x − pi)2

2σ2
i

}

• Table of parameters of mixed
normal distributions

i pi σi wi
1 −3 0.3 0.4
2 −1 0.6 0.1
3 +1 0.3 0.3
4 +3 0.6 0.2

4 3 2 1 0 1 2 3 4
Random variable x

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Pr
ob

ab
ili

ty

Legend:
Probability function

Figure 3: Graph of the benchmark probability
distribution
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Bechmarking of QCBM Tested gradient-free and derivative optimization methods

Cost function for optimization algorithms

Total Variation (TV)

• Cost function formula

fTV(θ) = fTV (Pmodel,θ(x),Pdata(x))

=
∑

x

(
Pmodel,θ(x)− Pdata(x)

)

Maximum Mean Discrepancy (MMD)

• Cost function formula

fMMD(θ) ≊ E [K(Pmodel,θ,Pmodel,θ)]

− 2E [K(Pmodel,θ,Pdata)]

+E [K(Pdata,Pdata)]

• Kernel function

K(x, y) = 1
k

k∑
i=1

exp

{
− 1

2σi
|x − y|2

}
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Bechmarking of QCBM Tested gradient-free and derivative optimization methods

Tested optimization algorithms

Gradient-free optimization

• COBYLA optimizer

• Low number of cost function evaluations
• Low noise resilience, higher number of

shots
• CMA-ES optimizer

• Allows for batch calculations
• Able to converge fast

Derivative optimization

• ADAM optimizer

• Usage of first derivative
• Batch calculation of gradient
• Analytic gradient for MMD cost
• Momentum can increase noise resilience

• Finding the relation between circuit depth and the learning result for each of the
optimization algorithms.
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Results of QCBM bechmarking COBYLA optimizer - gradient-free

Optimal depth for the COBYLA optimized QCBM
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Depth
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Legend:
Cost at circuit depth

Figure 4: The TV cost reached for different depths
of the QCBM circuit with the COBYLA optimizer

Figure 5: Probability distribution with lowest cost
generated with the COBYLA optimizer
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Results of QCBM bechmarking CMA-ES optimizer - gradient-free

Optimal depth for the CMA-ES optimized QCBM
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Legend:
model trained with CMA

Figure 6: TheTV cost reached for different depths
of the QCBM circuit with CMA-ES optimizer

Figure 7: Probability distribution with lowest cost
generated with the CMA-ES optimizer
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Results of QCBM bechmarking ADAM optimizer - derivative

Optimal depth for the ADAM optimized QCBM

Figure 8: TheMMD cost reached for different
depths of the QCBM circuit with ADAM optimizer

Figure 9: Probability distribution with lowest cost
generated with the ADAM optimizer
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Results of QCBM bechmarking ADAM optimizer - derivative

Plot TV and MMD cost during learning

Figure 10: Plot of TV and MMD cost function
during learning on simulator

Figure 11: Plot of TV and MMD cost function
during learning on ibmq_mumbai
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Conclusion Results and open questions

Conclusion

• Numerical results show the connection
between the depth of PQC and the
optimal choice of optimizer for learning.

• Observed similarity to learning of classical
RBM in the connection depth and optimal
learning method.

• Cost functions, e.g. MMD, used in
classical machine learning can be applied
to quantum machine learning for
performance advantage.

• Tendency of QCBM to produce periodic
distributions.

Open questions:

• Scaling the learning for larger PQC leads
to sampling problem.

• Introduction of hints for the learning of
difficult distributions.
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Conclusion Results and open questions

Thank you for your attention

Figure 12: QR code leading to the project repository

QCBM learning video
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