Comparison of gradient and derivative-free learning methods for
quantum circuit Born machine

Vlastimil Hudeéek!  Aurél Gabris! 2

IDepartment of Physics, Czech Technical University in Prague: Faculty of Nuclear Sciences and Physical Engineering

2Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics

June 16, 2024

fes

Gabris and Hudecek (FNSPE at CTU and Wigner) QCBM gradient and derivative-free



Quantum generative machine learning and objectives of the work

Quantum generative machine learning (QML) and parameterized quantum circuits (PQC)
® Generating samples from probability distributions
® PQC as a circuit for QML
® QCBM as a for of PQC with classical analogy

Learning of PQC through optimization of parameters
e QOptimization methods: derivative and gradient-free
® Comparison of methods with COBYLA, CMA-ES and ADAM optimizers

Numerical simulations and verification on quantum computers
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e iaife B Results of the project

Main results of the research

® New finding: Connection between the method of optimization of QCBM parameters and
the circuit depth and the number of circuit parameters.

® For a limited depth circuit the gradient-free optimization is more effective
® For complex cases with deeper circuits the derivative optimization has an advantage

o Effective implementation of the QCBM for quantum computer with parallel execution of
QCBM circuits.
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Quantum Circuit Born Machine Restricted Boltzmann Machine - base for QCBM

Restricted Boltzmann Machine

® Two layer classical neural network for
generative deep learning CITE, same as
QCBM serves as a generator for joint
probability distribution

® Joint probability determined by the
Boltzmann distribution function

P(v. h) = eXp{—g(V, h)}

Figure 1: Restricted Boltzman Machine as a two
layer neural network with a visible (white)
and a hidden (black) layer nodes CITE %
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Quantum Circuit Born Machine
® Using the Born rule as a mean of

generating (probability)
distribution instead of relying of

L layers
Boltzman distribution
Is)y 4 R=(11) | Ry(Bu) 4 (=
P(v,h) = <7>T th> .
’ B . ) |— = i
where Py p, Qenotes. measurement . e on ) S
operator which fulfills

ZV,II ,vab = ]I
® For the case of PQC with
parameter vector @ this can be

rewritten as P = (¢[1)g) @
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Figure 2: Schematic of a QCBM



Bechmarking of QCBM

Test distribution

® Mixing of normal distributions
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® Table of parameters of mixed

normal distributions

U opi | op | w
11 -3103]|04
21 -1]061|0.1
3|+11]1031]0.3
4143106102

Gabris and Hudecek (FNSPE at CTU and Wigner)

Legend:
0.0010 4 —— Probability function

0.0008 -

R

0.0006

Probablhty

0.0004

0.0002 -

0.0000 -

-4 -3 -2 -1 0 1 2 3 4
Random variable x

Figure 3: Graph of the benchmark probability@

distribution
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e HeleE] I Tested gradient-free and derivative optimization methods

Cost function for optimization algorithms

Total Variation (TV) Maximum Mean Discrepancy (MMD)
® Cost function formula ® Cost function formula
frv(0) = frv (Pmodel, o(I) Pyata()) fump(0) = E [K(Pmodel,0; Pmodel,0)]
= Z < model,6 ( Pdata(@) ~ 2B [K(Prmodet 0, Pdata)]

JFE {K(Pdata- Pdata)}

e Kernel function

1< 1
_ = - o 2
y) = : ;:1 exp{ 20_2_135 1l }
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e HeleE] I Tested gradient-free and derivative optimization methods

Tested optimization algorithms

Gradient-free optimization Derivative optimization
® COBYLA optimizer e ADAM optimizer
® |Low number of cost function evaluations ® Usage of first derivative
® Low noise resilience, higher number of ® Batch calculation of gradient
shots ® Analytic gradient for MMD cost
e CMA-ES optimizer ® Momentum can increase noise resilience

® Allows for batch calculations
® Able to converge fast

¢ Finding the relation between circuit depth and the learning result for each of the

optimization algorithms. %%%
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Optimal depth for the COBYLA optimized QCBM
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Figure 4: The TV cost reached for different depths  Figure 5: Probability distribution with lowest cos
of the QCBM circuit with the COBYLA optimizer  generated with the COBYLA optimizer
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Optimal depth for the CMA-ES optimized QCBM

0.07
Legend: . Legend:
mm model trained with CMA . o data
0.030 s model trained with CMA
0.06 N
0025 0.05 o
0.020 z
= g 0.04
S |
&) Q
0.015 E 0.0 .
0.010 0.02
.
0.005 0.01 .
Tl
0.000 0.00 14 ﬂl||

200 400 600 800
Depth and generation

-4 -3 ! -1 0 1 2 3 4
Random variable x

Figure 6: TheTV cost reached for different depths  Figure 7: Probability distribution with lowest cos
of the QCBM circuit with CMA-ES optimizer generated with the CMA-ES optimizer
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Optimal depth for the ADAM optimized QCBM
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Figure 8: TheMMD cost reached for different Figure 9: Probability distribution with lowest cos

depths of the QCBM circuit with ADAM optimizer generated with the ADAM optimizer
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Plot TV and MMD cost during learning
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Figure 10: Plot of TV and MMD cost function Figure 11: Plot of TV and MMD cost function
during learning on simulator during learning on ibmq_mumbai
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Conclusion

® Numerical results show the connection
between the depth of PQC and the

optimal choice of optimizer for learning. Open questions:

® QObserved similarity to learning of classical
RBM in the connection depth and optimal e Scaling the learning for larger PQC leads

learning method. to sampling problem.
® Cost functions, e.g. MMD, used in e Introduction of hints for the learning of
classical machine learning can be applied difficult distributions.

to quantum machine learning for
performance advantage.

® Tendency of QCBM to produce periodic

distributions. %
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Conclusion Results and open questions

Thank you for your attention

Figure 12: QR code leading to the project repository

QCBM learning video %
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