Comparison of gradient and derivative-free learning methods for quantum circuit Born machine

Vlastimil Hudeček¹ Aurél Gábris^{1, 2}

¹Department of Physics, Czech Technical University in Prague: Faculty of Nuclear Sciences and Physical Engineering

²Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics

June 19, 2024

Quantum generative machine learning and objectives of the work

- Quantum generative machine learning (QML) and parameterized quantum circuits (PQC)
 - Generating samples from probability distributions
 - PQC as a circuit for QML
 - QCBM as a for of PQC with classical analogy
- Learning of PQC through optimization of parameters
- Optimization methods: derivative and gradient-free
- Comparison of methods with COBYLA, CMA-ES and ADAM optimizers
- Numerical simulations and verification on quantum computers

Main results of the research

- New finding: Connection between the method of optimization of QCBM parameters and the circuit depth and the number of circuit parameters.
 - For a limited depth circuit the gradient-free optimization is more effective
 - For complex cases with deeper circuits the derivative optimization has an advantage
- Effective implementation of the QCBM for quantum computer with parallel execution of QCBM circuits.

Restricted Boltzmann Machine

- Two layer classical neural network for generative deep learning¹, same as QCBM serves as a generator for joint probability distribution
- Joint probability determined by the Boltzmann distribution function

$$P(\mathbf{v}, \mathbf{h}) = \frac{\exp\{-E(\mathbf{v}, \mathbf{h})\}}{Z}$$

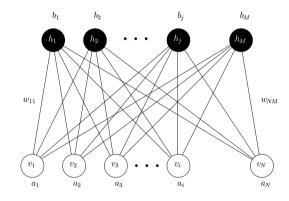


Figure 1: Restricted Boltzman Machine as a two layer neural network with a visible (white) and a hidden (black) layer nodes,

¹Oleksiy Kondratyev Antoine Jacquier. Quantum Machine Learning and Optimisation in Finance. Packt Publishing, 2022. ISBN: 1801813574

Quantum Circuit Born Machine

 Using the Born rule as a mean of generating (probability) distribution instead of relying of Boltzman distribution²

$$P(\mathbf{v}, \mathbf{h}) = \langle \psi | \mathcal{P}_{\mathbf{v}, \mathbf{h}}^{\dagger} \mathcal{P}_{\mathbf{v}, \mathbf{h}} | \psi \rangle,$$

where $\mathcal{P}_{\mathbf{v},\mathbf{h}}$ denotes measurement operator which fulfills

$$\sum_{v,h} \mathcal{P}_{v,h} = \mathbb{I}$$

• For the case of PQC with parameter vector $\boldsymbol{\theta}$ this can be rewritten as $P = |\langle \boldsymbol{\phi} | \psi_{\boldsymbol{\theta}} \rangle|^2$

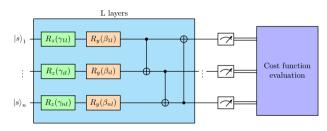


Figure 2: Schematic of a QCBM

²Alex Kondratyev. "Non-Differentiable Leaning of Quantum Circuit Born Machine with Genetic Algorithm". en. In: Wilmott (2021)

Test distribution

Mixing of normal distributions

$$P(x) = \frac{1}{N} \sum_{i=1}^{4} w_i \exp\left\{-\frac{(x-p_i)^2}{2\sigma_i^2}\right\}$$

 Table of parameters of mixed normal distributions

i	p_i	σ_i	w_i	
1	-3	0.3	0.4	
2	-1	0.6	0.1	
3	+1	0.3	0.3	
4	+3	0.6	0.2	

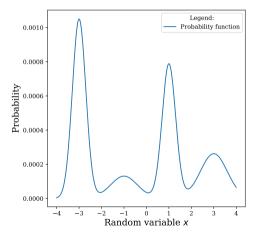


Figure 3: Graph of the benchmark probability distribution

Cost function for optimization algorithms

Total Variation (TV)

Cost function formula

$$\begin{split} f_{\mathsf{TV}}(\pmb{\theta}) &= f_{\mathsf{TV}}\left(P_{\mathsf{model},\pmb{\theta}}(x), P_{\mathsf{data}}(x)\right) \\ &= \sum_{x} \left(P_{\mathsf{model},\pmb{\theta}}(x) - P_{\mathsf{data}}(x)\right)^2 \end{split}$$

Maximum Mean Discrepancy (MMD)

Cost function formula³,

$$f_{\mathsf{MMD}}(oldsymbol{ heta}) \approxeq \mathbb{E}\left[K(P_{\mathsf{model},oldsymbol{ heta}}, P_{\mathsf{model},oldsymbol{ heta}})
ight] \ - 2\mathbb{E}\left[K(P_{\mathsf{model},oldsymbol{ heta}}, P_{\mathsf{data}})
ight] \ + \mathbb{E}\left[K(P_{\mathsf{data}}, P_{\mathsf{data}})
ight]$$

Kernel function

$$K(x, y) = \frac{1}{k} \sum_{i=1}^{k} \exp\left\{-\frac{1}{2\sigma_i}|x - y|^2\right\}$$

³ Jin-Guo Liu and Lei Wang. "Differentiable Learning of Quantum Circuit Born Machine". In: Phys. Rev. A 98, 062324 (2018) (11, 2018)

Tested optimization algorithms

Gradient-free optimization

- COBYLA optimizer
 - Low number of cost function evaluations
 - Low noise resilience, higher number of shots
- CMA-ES optimizer
 - Allows for batch calculations
 - Able to converge fast

Derivative optimization

- ADAM optimizer
 - Usage of first derivative
 - Batch calculation of gradient
 - Analytic gradient for MMD cost
 - Momentum can increase noise resilience

 Finding the relation between circuit depth and the learning result for each of the optimization algorithms.

Optimal depth for the COBYLA optimized QCBM

Legend: Cost at circuit depth

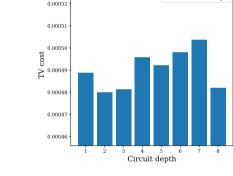


Figure 4: The TV cost reached for different depths of the QCBM circuit with the COBYLA optimizer

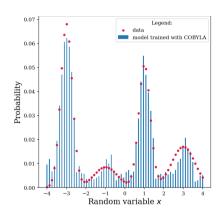


Figure 5: Probability distribution with lowest cost generated with the COBYLA optimizer

Optimal depth for the CMA-ES optimized QCBM

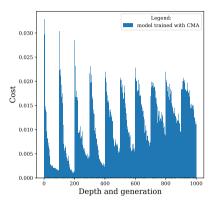


Figure 6: TheTV cost reached for different depths of the QCBM circuit with CMA-ES optimizer

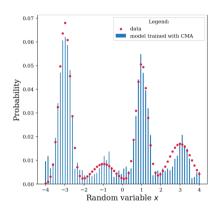


Figure 7: Probability distribution with lowest cost generated with the CMA-ES optimizer

Optimal depth for the ADAM optimized QCBM

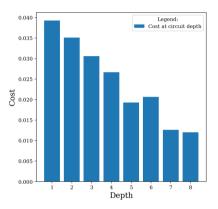


Figure 8: TheMMD cost reached for different depths of the QCBM circuit with ADAM optimizer

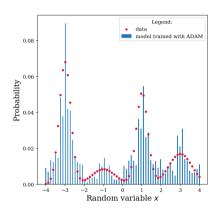


Figure 9: Probability distribution with lowest cost generated with the ADAM optimizer

Plot TV and MMD cost during learning

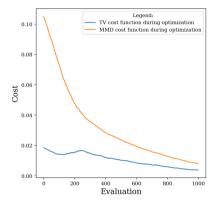


Figure 10: Plot of TV and MMD cost function during learning on simulator

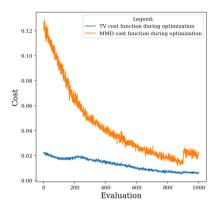


Figure 11: Plot of TV and MMD cost function during learning on ibmq_mumbai

Conclusion

- Numerical results show the connection between the depth of PQC and the optimal choice of optimizer for learning.
- Observed similarity to learning of classical RBM in the connection depth and optimal learning method.
- Cost functions, e.g. MMD, used in classical machine learning can be applied to quantum machine learning for performance advantage.
- Tendency of QCBM to produce periodic distributions.

Open questions:

- Scaling the learning for larger PQC leads to sampling problem.
- Introduction of hints for the learning of difficult distributions.

Thank you for your attention

Figure 12: QR code leading to the project repository

QCBM learning video

