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Photonic Quantum Computing
A photonic quantum computer stores information in independent optical modes called
qumodes.
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Quantum advantage by USTC
The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated an advantage over classical computation in 2020 (with improvements in
2021 and 2023, with the latter mentioning our method as a classical benchmark).
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Quantum advantage by Xanadu

Xanadu also demonstrated an advantage over classical computation in 2022 on the
Borealis chip, which is also publicly available.
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Classical simulation of photonic
quantum computers
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Simulating photonic quantum circuits

We need to simulate photonic quantum computers, because:

▶ Photonic quantum computers are still not widely available, but we want to
execute photonic quantum algorithms for research.

▶ It can aid circuit design.

▶ Trying to simulate quantum computing may inspire better classical algorithms.

▶ It can be used to certify hardware.

▶ It helps photonic quantum machine learning research via automatic
differentiation.

However: Simulating photonic quantum circuits is classically hard in general!
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: PhotonIc QUAntum computer Simulator SOftware
We are developing and maintaining a new simulator framework written in Python
called Piquasso1.

We wanted to have a simulator we could experiment with and we could extend and
improve by ourselves.

Main goals:

▶ Extensibility (e.g., TensorFlow, JAX)

▶ High performance (e.g., via C++ PiquassoBoost plugin)

▶ Reproducibility

▶ Clean code

Piquasso is open source, available on GitHub2 and can be installed with:

pip install piquasso

1ZK et al., arXiv:2403.04006
2https://github.com/Budapest-Quantum-Computing-Group/piquasso
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Available simulators in

Different state representations are useful depending on the scenario.

In Piquasso, you can choose from the following:

▶ GaussianSimulator: Simulates Gaussian states

▶ SamplingSimulator: Simulates the Boson Sampling scheme

▶ FockSimulator: Simulates Fock states

▶ PureFockSimulator: Simulates pure Fock states

Available simulators in PiquassoBoost:

▶ BoostedGaussianSimulator: Same as GaussianSimulator, but
reimplemented in C++ with improved hafnian and torontonian calculations.

▶ BoostedSamplingSimulator: Same as SamplingSimulator, where sampling
algorithm is reimplemented and parallelized in C++ with improved permanent
calculation algorithms.
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Usage example

1 simulator = pq.GaussianSimulator(d=5)

2

3 with pq.Program() as program:

4 pq.Q(all) | pq.Vacuum()

5

6 for i in range (5):

7 pq.Q(i) | pq.Squeezing(r=0.1) | pq.Displacement(r=1.0)

8

9 pq.Q(0,1) | pq.Beamsplitter(theta=np.pi / 3)

10 pq.Q(2,3) | pq.Beamsplitter(theta=np.pi / 4)

11 pq.Q(3,4) | pq.Beamsplitter(theta=np.pi / 5)

12

13 pq.Q(all) | pq.ParticleNumberMeasurement()

14

15 result = simulator.execute(program , shots =1000)

16 print(result.samples)

17 # [(0, 1, 1, 2, 2), (1, 3, 0, 0, 1), (0, 1, 0, 0, 3) ,...



Choose your framework!
▶ NumpyCalculator: Default calculator, uses , and

.

▶ TensorflowCalculator: Uses for calculations (with graph

compilation and support).

▶ JaxCalculator: Uses for calculations (with support).

+
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Fock space truncation

The Fock simulation is an approximation, due to the ubiquitous cutoff.

: Local cutoff
Constraint on the particle number by mode. State vector size:

cd , c : local cutoff, d : number of modes. (1)

: Global cutoff
Constraint on particle number on the whole system. State vector size:(

d + c − 1

c − 1

)
, c : global cutoff, d : number of modes. (2)

Contributions that are left out by using a global cutoff instead of a local one
have small coefficients in most cases.
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Photon losses3: vs.

3In a circuit using 4 continuous-variable quantum neural network (CVQNN) layers on 8 modes.
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Automatic differentiation4: vs.

4In a circuit using 4 CVQNN layers with cutoff 10.
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Hafnian calculation speedup in PiquassoBoost
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Composer

A web-based circuit composer is made available at https://piquasso.com.
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Applications
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I. Training continuous-variable Born machines (CVBMs)5

▶ Born machine: Parametrized quantum circuit producing probability distributions
via Born’s rule =⇒ generative quantum machine learning

▶ CVBM: Photonic quantum circuits can generate position distribution

5ZK, D. T. R. Nagy, Z. Zimborás, 2024, “On the learning abilities of photonic continuous-variable
Born machines” [submitted]
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▶ Born machine: Parametrized quantum circuit producing probability distributions
via Born’s rule =⇒ generative quantum machine learning

▶ CVBM: Photonic quantum circuits can generate position distribution

uses a new classical algorithm for homodyne measurement tailored for
multimode systems.

∼ 1000× speedup over previous solutions!

5ZK, D. T. R. Nagy, Z. Zimborás, 2024, “On the learning abilities of photonic continuous-variable
Born machines” [submitted]
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I. Efficient training of multimode CVBMs with
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II. Optimizing non-deterministic gates with imperfect detections6

Nondeterministic gates can implement qubit gates on a photonic quantum computer.

Problem: Photon detectors have biases.

6C. Czabán, ZK, M. Karácsony, Z. Zimborás, 2024, “Suppressing photon detection errors in
nondeterministic state preparation”, ReAQCT’24
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II. Fidelity vs. success rate of conditional sign flip gate
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III. Gate synthesis with adaptive circuit compression8

Gate synthesis problem: Given a unitary matrix, find a corresponding circuit
implementing it!

Existing solution: Gradient-based optimization with universal layers.

Using + =⇒ ∼ 600× speedup!7

This speedup allows us to compress the circuit adaptively, by “throwing” out gates
close to identity.

7With 25 CVQNN layers and Fock space cutoff 20, averaged from 1000 iterations.
8H. Varga, 2024, “Decomposition of unitary matrices based on bosonic Hamiltonian operators into

elementary photonic quantum gates” [unpublished]
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III. Decomposing the cubic phase gate with compression
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III. Decomposing the cubic phase gate with compression
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Thank you for your attention!

This research was supported by the Ministry of Culture and Innovation and the National Research,
Development and Innovation Office within the Quantum Information National Laboratory of Hungary

(Grant No. 2022-2.1.1-NL-2022-00004).
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