Quantum approximated cloning-assisted density matrix exponentiation

Pablo Rodriguez-Grasa, Rubén Ibarrondo, Javier González-Conde, Yue Ban, Patrick Rebentrost & Mikel Sanz

pablojesus.rodriguez@ehu.eus

June 19th, 2024

arXiv:2311.11751

ReAQCT, Budapest

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

1

LMR trick:

LMR assisted by biomimetic copies

Imperfect cloning

LMR trick:

LMR assisted by biomimetic copies

Imperfect cloning

LMR_[1] trick:

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF THE BASQUE COUNTRY

Could we find a better operation? $\mathcal{O}(\Delta t^3)$?

[1] Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). "Quantum principal component analysis". Nature Physics, 10(9), 631-633. [2] Kimmel, S., Lin, C. Y. Y., Low, G. H., Ozols, M., & Yoder, T. J. (2017). "Hamiltonian simulation with optimal sample complexity". npj Quantum Information, 3(1), 13.

 $T_{\rm LMR}(\sigma)$ $e^{-i\rho\Delta t}\sigma e^{i\rho\Delta t} + \mathcal{O}(\Delta t^2)$

LMR protocol is optimal_[2]

What if we consider a time interval *t* ?

Access to *n* copies of ρ

 $\Delta t = t/n$

 $n = \mathcal{O}(t^2/\varepsilon)$

ρ

ρ

 σ

Applicability

LETTERS PUBLISHED ONLINE: 27 JULY 2014 | DOI: 10.1038/NPHYS3029

Quantum principal component analysis

Seth Lloyd^{1,2*}, Masoud Mohseni³ and Patrick Rebentrost²

Quantum embeddings for machine learning

Seth Lloyd,^{1,2} Maria Schuld,² Aroosa Ijaz,² Josh Izaac,² and Nathan Killoran² ¹Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA ²Xanadu, Toronto, Canada (Dated: July 3, 2022)

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

PRL 113, 130503 (2014)

PHYSICAL REVIEW LETTERS

week ending 26 SEPTEMBER 2014

Quantum Support Vector Machine for Big Data Classification

Patrick Rebentrost,^{1,*} Masoud Mohseni,² and Seth Lloyd^{1,3,†}

¹Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Google Research, Venice, California 90291, USA ³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 12 February 2014; published 25 September 2014)

Quantum Information npj

www.nature.com/npjqi

ARTICLE OPEN Hamiltonian simulation with optimal sample complexity

Shelby Kimmel ¹, Cedric Yen-Yu Lin¹, Guang Hao Low², Maris Ozols³ and Theodore J. Yoder²

Contents

Density matrix exponentiation LMR trick:

LMR assisted by biomimetic copies

Imperfect cloning

Biomimetic cloning

$$d = 2^{q}$$
 Observed

$$\rho = \sum_{i,j=1}^{d} \rho_{ij} |\psi_{i}\rangle \langle\psi_{j}|$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

n original copies

The biomimetic cloning machine (\hat{O}_{C}) clones the statistics associated to an observable

[1] U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano. "Biomimetic Cloning of Quantum Observables". Sci Rep 4, 4910 (2014).

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF THE BASQUE COUNTRY

copies

Biomimetic cloning

$$d = 2^{q}$$
 Observed

$$\rho = \sum_{i,j=1}^{d} \rho_{ij} |\psi_{i}\rangle \langle\psi_{j}|$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

n original copies

The biomimetic cloning machine (\hat{O}_{C}) clones the statistics associated to an observable

[1] U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano. "Biomimetic Cloning of Quantum Observables". Sci Rep 4, 4910 (2014).

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF THE BASQUE COUNTRY

copies

Biomimetic cloning

$$d = 2^{q}$$
 Observed

$$\rho = \sum_{i,j=1}^{d} \rho_{ij} |\psi_{i}\rangle \langle\psi_{j}|$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

$$\rho \quad \rho$$

$$n \text{ original copies}$$

We consider ρ as the observable i=1

[1] U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano. "Biomimetic Cloning of Quantum Observables". Sci Rep 4, 4910 (2014).

Acting *k* times:

$$\hat{O}_{c}^{(k)}(\rho) = \sum_{i=1}^{d} p_{i} \left(|\psi_{i}\rangle\langle\psi_{i}| \right)^{\otimes k}$$

Contents

Density matrix exponentiation LMR trick:

LMR assisted by biomimetic copies

Imperfect cloning

LMR assisted by biomimetic copies

Given *n* copies of ρ

From each original copy

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

Error analysis

Is it worth disturbing the original copies of ρ to create k biomimetic copies?

Original protocol: $\varepsilon_{\text{LMR}(n)} \approx \| [\rho, \sigma]_2 + 2(\rho - \rho) \|$

 $\varepsilon_{\text{BIO}(n \to nk)} \approx \| [\rho, \sigma]_2 + 2 \rho$ Our protocol:

[1] Puchała, Zbigniew, Łukasz Pawela, and Karol Życzkowski. "Distinguishability of generic quantum states." Physical Review A 93.6 (2016): 062112.

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF THE BASQUE COUNTRY

$$\rho$$

$$\sigma$$
) $\| t^2/2n$

Does not violate optimality

$$\circ \sigma - \{\rho, \sigma\} \| t^2/2n$$

- First order in ρ, σ

$$\overline{\mathsf{I}}_{_{1}} \equiv Q_{1}$$

- Second order in ρ , σ

Statistical case:

 ρ and σ random density matrices

$$Q_1 \ge \frac{d}{8} \left(\frac{\|\rho - \sigma\|_1 - 32/d^2}{1 + 4/d} \right)$$

$$\|\rho - \sigma\|_{\overrightarrow{1}} \operatorname{const} . [1]$$

Average $Q_1 \propto d$

Cost analysis

Instead of cloning I could generate more original copies of ρ

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

 $l \cdot C_s \ge n \cdot (k-1) \cdot C_c$

l to guarantee an error smaller or equal than the one with biomimetics copies

 $C_c \leq \frac{C_s}{L-1} \left(\frac{1}{L} \right)$ -1)

Cost C_c

Cost C_s

Performance analysis

100,000 random cases uniformly distributed according to the Hilbert-Schmidt measure

Given $n \longrightarrow$ Exponential reduction in ϵ

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

Outlook and conclusions

Density matrix exponentiation can be <u>enhanced</u>

? Killing application

- On average, enhancement scales with the <u>dimension of the system</u>
- Using imperfect cloning could enhance <u>other protocols</u> requiring copies

Block-diagonalization ?

Collaborators:

Ruben Ibarrondo

Yue Ban

arXiv:2311.11751

Contact

pablorogra@gmail.com @pablones8 nquirephysics.com

Faculty of Science and Technology Univ. of the Basque Country 48940, Leioa, Spain

Universidad Euskal Herriko del País Vasco Unibertsitatea

EHU QC EHU Quantum Center

Patrick Rebentrost

Mikel Sanz

Thank you for your attention!

