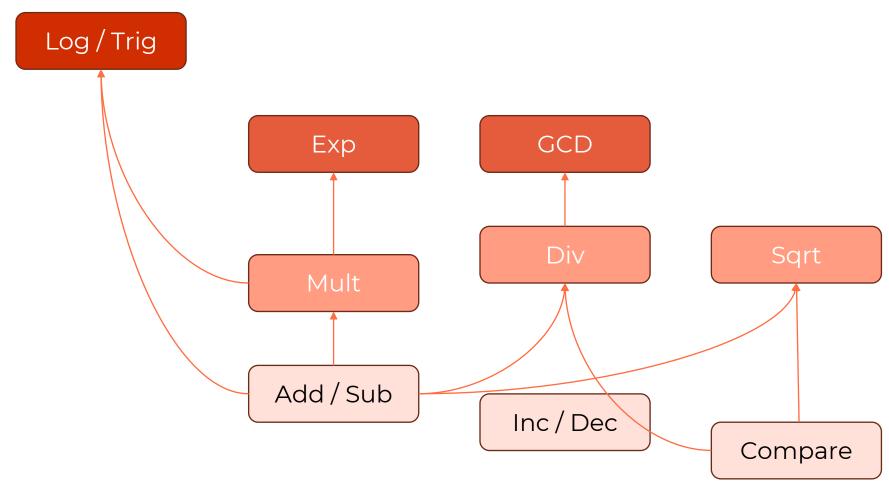


Optimizing Tand CNOT gates in quantum ripple-carry adders

Maxime REMAUD ReAQCT 2024

<u>Relations between arithmetic operators</u>



Why do we care ?

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney 1 and Martin Ekerå 2

An Efficient Quantum Factoring Algorithm

Oded Regev*

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Improved quantum circuits for elliptic curve discrete logarithms

Thomas Häner¹, Samuel Jaques^{2 *†}, Michael Naehrig³, Martin Roetteler¹, and Mathias Soeken¹

Block-encoding structured matrices for data input in quantum computing

Christoph Sünderhauf¹, Earl Campbell^{1,2}, and Joan Camps¹

Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3

Matthew Amy^{1,4}, Olivia Di Matteo^{2,4}, Vlad Gheorghiu^{3,4}, Michele Mosca^{3,4,5,6}, Alex Parent^{2,4}, and John Schanck^{3,4}

<u>Addition</u>

$$a \in \mathbb{Z}_{2^{n}} \qquad \longleftrightarrow \qquad (a_{n-1}, \dots, a_{0}) \in \{0, 1\}^{n} \qquad \left(a = \sum_{i=0}^{n-1} a_{i} 2^{i}\right)$$
$$b \in \mathbb{Z}_{2^{n}} \qquad \longleftrightarrow \qquad (b_{n-1}, \dots, b_{0}) \in \{0, 1\}^{n} \qquad \left(b = \sum_{i=0}^{n-1} b_{i} 2^{i}\right)$$
$$a+b \eqqcolon s \in \mathbb{Z}_{2^{n+1}} \qquad \longleftrightarrow \qquad (s_{n}, \dots, s_{0}) \in \{0, 1\}^{n+1} \qquad \left(s = \sum_{i=0}^{n} s_{i} 2^{i}\right)$$

We want an operator with the following action: $|a\rangle_n |b\rangle_n |z\rangle \mapsto |a\rangle_n |s\rangle_n |z \oplus s_n\rangle$

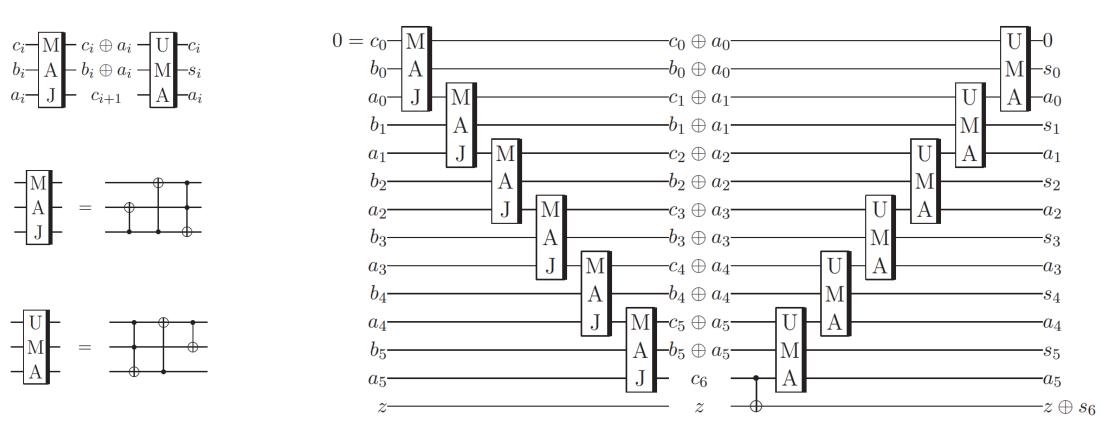
<u>Complexity of quantum addition</u>

 $\left|a\right\rangle_{n}\left|b\right\rangle_{n}\left|z\right\rangle\mapsto\left|a\right\rangle_{n}\left|s\right\rangle_{n}\left|z\oplus s_{n}\right\rangle$

	Method	Depth	Ancillae	Size
Class. Arith.	Ripple-Carry	O(n)	O(1)	O(n)
\mathcal{L}	Carry-Lookahead	$O(\log n)$	O(n)	O(n)
QFT Arith. $\left\{ \right $	QFT-based	$O(\log n)$	0	$O(n^2)$

We consider only garbage-free ripple-carry adders (and comparators), using at most 1 ancilla, with no phase approximation and no measurement.

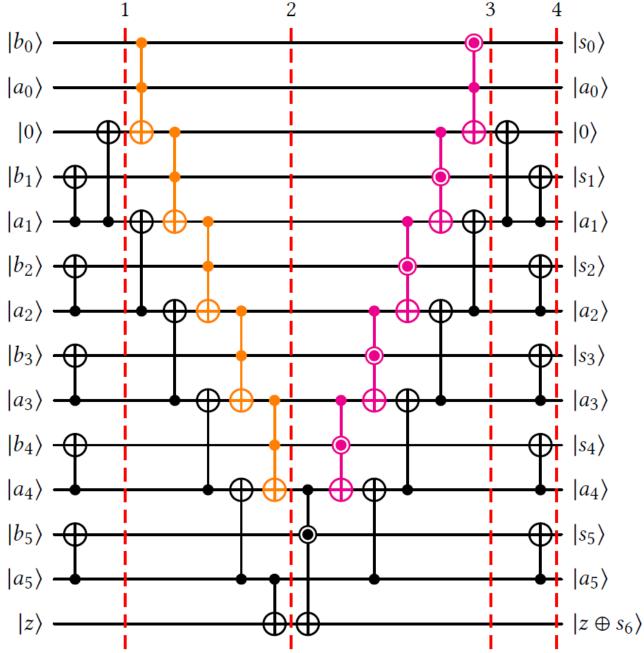
Ripple-carry technique (Cuccaro et al. adder (1))



Cuccaro et al. adder (2)

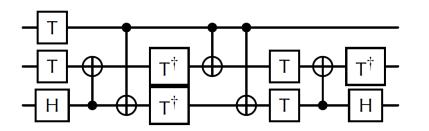
Step	1	2	3	4
CNOT-count	n	n-1	n-2	n
CCNOT-count		n-1		
Peres-count			n	
CNOT-depth	2			2
CCNOT-depth		n-1		
Peres-depth			n	

CNOT-count = 4n - 3CNOT-depth = 4CCNOT = n - 1Peres = n

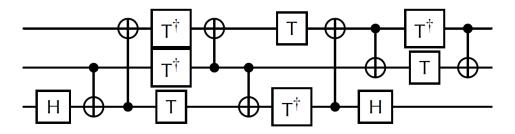


© Eviden SAS - Confidential

<u>Clifford+T gate set</u>



A decomposition of the Peres gate with 5 CNOT and a T-depth of 4.



A decomposition of the CCNOT with 7 CNOT and a T-depth of 3.

The complexity of Cuccaro et al. adder becomes:

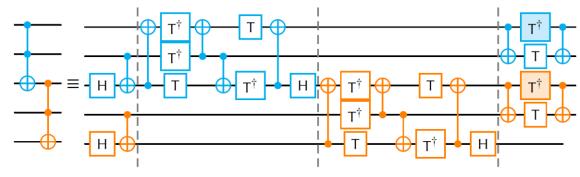
CNOT-count = 17n + O(1)CNOT-depth = 13n + O(1)T-count = 14n + O(1)T-depth = 6n + O(1)

<u>Ripple-carry adders</u>

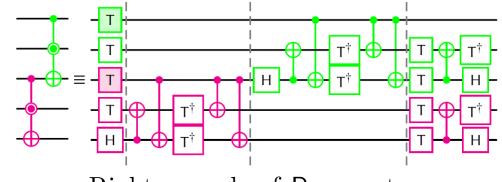
	Algorithm	CNOT-	CNOT-	T-	T-	Ancilla
		depth	count	depth	count	
	[TK05]	26n	34n	9n	28n	0
	[SRV08]	16n	18n	6n	14n	1
	[CDKM04] (1)	16n	18n	6n	14n	1
	[TTK10]	15n	17n	6n	14n	0
	[TR11]	14n	18n	6n	14n	1
	[CDKM04] (2)	13n	17n	6n	14n	1
(Opt. [CDKM04] (1)	11n	14n	4n	10n	1
This paper $\boldsymbol{\zeta}$	Opt. $[TTK10]$	10n	16n	3n	12n	0
l	Opt. $[CDKM04]$ (2)	8n	16n	3n	12n	1

Note: +O(1) are omitted.

Optimization rules (depth)



Left cascade of CCNOT gates.



Right cascade of Peres gates.

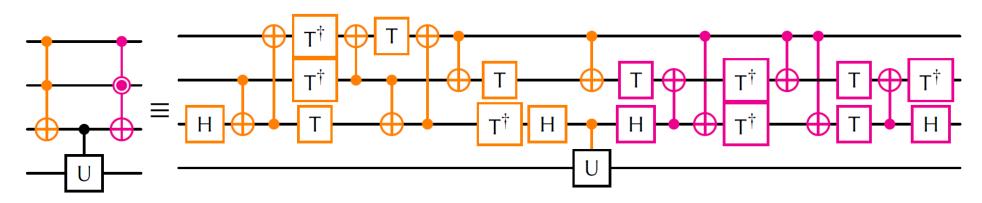
For a cascade of n gates:

For a cascade of n gates:

$CNOT ext{-depth}$:	$7n \longrightarrow 4n+3$
T-depth:	$3n \longrightarrow 2n+1$

CNOT-depth:	$5n \longrightarrow 4n+1$
T-depth:	$4n \longrightarrow n+3$

Optimization rules (count)



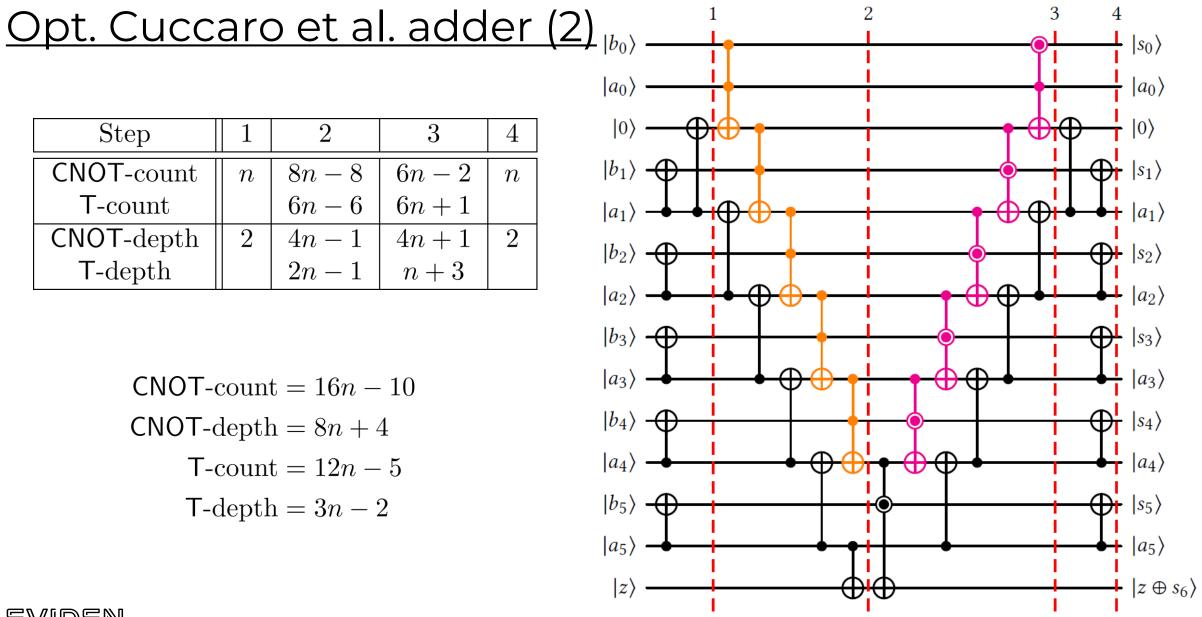
V-shape with CCNOT on the left branch and Peres gates on the right one.

For a V-shape with n levels:

 $\begin{array}{ll} \mathsf{CNOT-count:} & 12n \longrightarrow 12n \\ \mathsf{T-count:} & 14n \longrightarrow 12n \end{array}$

Step	1	2	3	4
CNOT-count	n	8n - 8	6n-2	n
T-count		6n - 6	6n + 1	
CNOT-depth	2	4n - 1	4n + 1	2
T-depth		2n - 1	n+3	

CNOT-count = 16n - 10CNOT-depth = 8n + 4T-count = 12n - 5T-depth = 3n - 2



EVIDEN

<u>Take away</u>

• Precise state of the art of quantum ripple-carry adders

• We show that in the Clifford+T, the typical T-depth is 3n instead of 6n

• Similarly, there are comparators with T-depth of 4n instead of 6n

• The optimization rules can be reused (ongoing work on other arith. operators)

EVIDEN

Questions?

For more information, please contact me: maxime.remaud@eviden.com