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Quantum advantage using photons

The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated an advantage over classical computation in 2020, using the Gaussian
Boson Sampling (GBS) scheme1.

1H.-S. Zhong et al., Quantum computational advantage using photons, Science (2020)
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Quantum advantage using photons

The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated an advantage over classical computation in 2020, using the Gaussian
Boson Sampling (GBS) scheme1.

However, GBS only uses linear optical quantum gates =⇒ GBS is non-universal!

Difficult to implement non-linear (e.g., Kerr) gates in a photonic circuit =⇒ We try
to avoid non-linear gates.

Idea: include ancilla detections and postselection!

1H.-S. Zhong et al., Quantum computational advantage using photons, Science (2020)
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Non-deterministic gates

Postselection is conditioning the output on the measurement result of ancilla modes.

In our case, we use particle number resolving detectors (PNRDs).
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Example: Nonlinear phaseshift (NS) gate
Goal: Implement the following gate2:

NS : α0 |0⟩+ α1 |1⟩+α2 |2⟩ 7→ α0 |0⟩+ α1 |1⟩−α2 |2⟩ . (1)

2E. Knill, R. Laflamme, G. J. Milburn, A scheme for efficient quantum computation with linear
optics, Nature (2001)
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Dual-rail encoding
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Conditional sign flip gate

Goal: Implement the following transformation3:

CZ : |++⟩qubit 7→ |ψ∗⟩ =
1

2
(|0, 0⟩+ |1, 0⟩+ |0, 1⟩− |1, 1⟩)qubit (2)

We can implement this by
using a specific interfer-
ometer denoted by U!

3E. Knill, Quantum gates using linear optics and postselection. Phys. Rev. A (2002)
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KLM protocol

The KLM protocol combines postselection and dual-rail encoding (+ gate
teleportation).

With this protocol, one can perform universal quantum computation using photonic
qubits using only linear optical elements.

Problem: PNRDs are biased in practice =⇒ incorrect state may be postselected
after faulty postselection!
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Detector efficiency matrix

The imperfections in the PNRD can be characterized by the detector efficiency
matrix:

Pm,n := Preadout(m|n). (3)

An example4:

P =


1.0 0.1050 0.0110 0.0012 0.001
0.0 0.8950 0.2452 0.0513 0.0097
0.0 0.0 0.7438 0.3770 0.1304
0.0 0.0 0.0 0.5706 0.4585
0.0 0.0 0.0 0.0 0.4013

 . (4)

This will introduce an error in the nondeterministic gates!

4V. Resta et al., Gigahertz Detection Rates and Dynamic Photon-Number Resolution with
Superconducting Nanowire Arrays. Nano Lett. (2023)
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Idea: adjust interferometer!
Changing the θ angles in the interferometer can increase the output state fidelity or
the success probability of nondeterministic gates with imperfect PNRDs!
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Parametrizing the interferometer5

5W. R. Clements et al., An Optimal Design for Universal Multiport Interferometers, Optica (2016),
arXiv:1603.08788 10 / 14

https://arxiv.org/abs/1603.08788


Gradient-based optimization

ρout(θ) :=
1

S(θ)

∑
n

P(x|n) tr2
{
U(θ)ρU†(θ) (I ⊗ |n⟩ ⟨n|)

}
(Final state)

S(θ) :=
∑
n

P(x|n) tr
{
U(θ)ρU†(θ) (I ⊗ |n⟩ ⟨n|)

}
(Success rate)
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Gradient-based optimization

L(θ) := 1−
√
⟨ψ∗| ρout(θ) |ψ∗⟩+α softplusβ(S

∗−S(θ)) (S∗ = Target success rate)

softplusβ(x) :=
1

β
log(exp(βx) + 1) (5)
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Optimization of conditional phase shift gate with imperfect PNRDs7
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The simulations were executed using Piquasso6.

6ZK et al., Piquasso: A Photonic Quantum Computer Simulation Software Platform,
arXiv:2403.04006 (2024)

7In this example, with target success rate S∗ = 0.075, code available at
https://github.com/Budapest-Quantum-Computing-Group/supressing-loqc-pd-errors
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Tradeoff between fidelity and success rate
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Thank you for your attention!
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