

COMPUTING CLASSICAL PARTITION FUNCTIONS: FROM ONSAGER AND KAUFMAN TO QUANTUM ALGORITHMS

ReAQCT '24, June 19-20, 2024 | Roberto Gargiulo, Matteo Rizzi, Robert Zeier | Quantum Control (PGI-8), FZJ

The Context

Optimization, Partition Functions and Quantum Computers

THE CONTEXT

- Binary Optimization (QUBO/MaxCut) is hard
- Many Classical Approaches:
- Heuristic Exact Solvers (e.g. Gurobi, QuBowl)
- Hardware Solvers (e.g. Ising Machines)
- Monte Carlo (e.g. Simulated Annealing)
- More...
- State-of-the-art: $\sim 10^{4}$ vertices (sparse graphs)

THE CONTEXT

- Binary Optimization (QUBO/MaxCut) is hard
- Quantum Approaches:
- Quantum Annealing (D-Wave)
- Variational Algorithms (QAOA, VQE)
- Imaginary Time Evolution (VITE, QITE)
- And many more

Classical Problems...

Energy

...with Quantum Solutions

THE CONTEXT

- Binary Optimization (QUBO/MaxCut) is hard
- Quantum Approaches
- Quantum Annealing (D-Wave)
- Variational Algorithms (QAOA, VQE)

Classical Problems...
Energy

- Imaginary Time Evolution (VITE, QITE)
- And many more
- Classical-to-Quantum Optimization Problem:

$$
\begin{aligned}
\left\{s_{v}\right\} \in\{0,1\}^{M} & \rightarrow|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes M} \\
\min _{\left\{s_{v}\right\}} H\left(\left\{s_{v}\right\}\right) & \rightarrow \min _{\psi}\langle\psi| H|\psi\rangle
\end{aligned}
$$

- State-of-the-art: $\sim 10^{2}-10^{3}$ qubits $\lesssim 10^{4}$

...with Quantum Solutions

THE CONTEXT

- Binary Optimization (QUBO/MaxCut) is hard
- Quantum Approaches

```
- Quantum Annealing (D-Wave)
- Variational Algorithms (QAOA, VQE)
- Imaginary Time Evolution (VITE, QITE)
- And many more
```

- Classical-to-Quantum Optimization Problem:

$$
\begin{aligned}
\left\{s_{v}\right\} \in\{0,1\}^{M} & \rightarrow|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes M} \\
\min _{\left\{s_{v}\right\}} H\left(\left\{s_{v}\right\}\right) & \rightarrow \min _{\psi}\langle\psi| H|\psi\rangle
\end{aligned}
$$

- State-of-the-art: $\sim 10^{2}-10^{3}$ qubits $\lesssim 10^{4}$
- NISQ: Limited Memory (and Circuit Depth). Alternative road?

Classical Problems...

Energy

...with Quantum Solutions

BEYOND OPTIMIZATION

- Physics-inspired approach: Finite temperature Ising models
- Still hard at finite temperature

- Classical Approaches:
- Monte Carlo Methods
- Tensor Networks
- Hardware Solvers (Janus II)
- And many more
- Alternative Classical-to-Quantum Mapping: Solution of 2D Ising Model
...with Quantum Solutions

BEYOND OPTIMIZATION

- Physics-inspired approach: Finite temperature Ising models
- Still hard at finite temperature

Classical Problems...

Energy

- Classical Approaches:
- Monte Carlo Methods
- Tensor Networks
- Hardware Solvers (Janus II)
- And many more
- Alternative Classical-to-Quantum Mapping: Solution of 2D Ising Model
...with Quantum Solutions

The Prelude

The Classical 2D Ising Model

THE PRELUDE - THE CLASSICAL 2D ISING MODEL

- Classical spins on a 2D lattice with $s_{V, k}= \pm 1$ and energy

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N} \sum_{v=1}^{M}\left(J s_{v, k} s_{v+1, k}+\Gamma s_{v, k} s_{v, k+1}\right), J, \Gamma>0
$$

- Equilibrium Properties, $p\left(\left\{s_{v, k}\right\}\right) \propto e^{-\beta E\left(\left\{s_{v, k}\right\}\right)}$:

1 Partition Function: $\mathcal{Z}=\sum_{\left\{s_{v, k}\right\}} e^{-\beta E\left(\left\{s_{v, k}\right\}\right)}$

2 Correlation Functions: $\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{1}{2} \sum_{\left\{s_{v, k}\right\}} s_{u, k} s_{u^{\prime}, k^{\prime}} e^{-\beta E\left(\left\{s_{v, k}\right\}\right)}$

THE PRELUDE - THE CLASSICAL 2D ISING MODEL

- Classical spins on a 2D lattice with $s_{v, k}= \pm 1$ and energy

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N} \sum_{v=1}^{M}\left(J s_{v, k} s_{v+1, k}+\left\lceil s_{v, k} s_{v, k+1}\right), J, \Gamma>0\right.
$$

- Transfer Matrix Solution (Onsager 1944, Kaufman 1949):

1 Partition Function: $\mathcal{Z}=c \operatorname{Tr}\left(\prod_{k=1}^{N} v\right), V=e^{\beta J \sum_{v=1}^{N} z_{v} z_{v+1}} e^{\gamma \sum_{v=1}^{M} x_{u}}$
2 Correlation Functions: $\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{1}{z} \operatorname{Tr}\left(V \cdots Z_{u} V \cdots Z_{u^{\prime}} V \ldots V\right)$

- (Floquet) Imaginary Time Evolution of the Quantum Chain
- Only M qubits for $M \times N$ spins!

Classical

Quantum

THE PRELUDE - THE CLASSICAL 2D ISING MODEL

- Classical spins on a 2D lattice with $s_{v, k}= \pm 1$ and energy

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N} \sum_{v=1}^{M}\left(J s_{v, k} s_{v+1, k}+\left\lceil s_{v, k} s_{v, k+1}\right), J, \Gamma>0\right.
$$

- Transfer Matrix Solution (Onsager 1944, Kaufman 1949):

1 Partition Function: $\mathcal{Z}=c \operatorname{Tr}\left(\prod_{k=1}^{N} V\right), V=e^{\beta J \sum_{v=1}^{N} z_{v} z_{v+1}} e^{\gamma \sum_{v=1}^{M} x_{u}}$
2 Correlation Functions: $\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{1}{z} \operatorname{Tr}\left(V \cdots Z_{u} V \cdots Z_{u^{\prime}} V \cdots V\right)$
Classical

Quantum

- Diagonalization via Representation Theory of Lie Groups/Algebras:
(aka Jordan-Wigner and Free Fermions)

$$
\rho: \mathrm{SO}(2 M, \mathbb{C})^{\times 2} \mapsto \mathcal{M}\left(2^{M}, \mathbb{C}\right)
$$

$$
T=P \cdot\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{4 M}
\end{array}\right) \cdot P^{-1} \mapsto V=\rho(T)=\rho(P)\left({ }^{v_{1}}\right.
$$

MOTIVATION AND OBJECTIVES

Motivation

1 Partition Functions as a generalization of optimization
2 Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model ${ }^{1}$

Objectives

1 More general models? Kaufman-type/Lie-theoretic solution?
Can we (efficiently) implement it on a quantum computer?
${ }^{1}$ See also: Arad 2010, De las Cuevas 2011, Iblisdir 2014, Matsuo 2014

A RESTRICTED CLASS OF ISING MODELS

Classical

- Classical spins $s_{v, k}= \pm 1$ on N layers of a graph \mathbb{G} :

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N}\left(\sum_{(u, v) \in E(\mathbb{G})} J_{u v}^{k} s_{u, k} s_{v, k}+\sum_{v \in V(\mathbb{G})} H_{v}^{k} s_{v, k}+\sum_{v \in V(\mathbb{G})} \Gamma_{v}^{k} s_{v, k} s_{v, k+1}\right)
$$

- Equilibrium Properties via Transfer Matrix (here $\Gamma_{v}^{k}>0$):

1 Partition Function (Periodic Boundary)

2 Correlation Functions (Periodic Boundary)

Quantum

- N^{d} spins on d-dim hypercube $\rightarrow N^{d-1}$ qubits on $d-1-\operatorname{dim}$ hypercube

A RESTRICTED CLASS OF ISING MODELS

- Classical spins $s_{V, k}= \pm 1$ on N layers of a graph \mathbb{G} :

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N}\left(\sum_{(u, v) \in E(\mathbb{G})} J_{u v}^{k} s_{u, k} s_{v, k}+\sum_{v \in V(\mathbb{G})} H_{v}^{k} s_{v, k}+\sum_{v \in V(\mathbb{G})} \Gamma_{V}^{k} s_{v, k} s_{v, k+1}\right)
$$

- Equilibrium Properties via Transfer Matrix (here $\Gamma_{v}^{k}>0$):

1 Partition Function (Periodic Boundary):

$$
\mathcal{Z}=c \operatorname{Tr}\left(\prod_{k=1}^{n} V_{k}\right), \quad V_{k}=e^{\beta \sum_{(u, v)} J_{u v}^{k} z_{u} z_{v}} e^{\beta \sum_{v} H_{v}^{k} z_{v}} e^{\sum_{v} \gamma_{v}^{k} x_{v}}
$$

2 Correlation Functions (Periodic Boundary):

$$
\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{1}{\mathcal{Z}} \operatorname{Tr}\left(V_{1} \cdots Z_{u} v_{k} \cdots Z_{u^{\prime}} V_{k^{\prime}} \cdots V_{N}\right)
$$

- Dimensional Reduction: $M \times N$ classical spins to M qubits.
- N^{d} spins on d-dim hypercube $\rightarrow N^{d-1}$ qubits on $d-1$-dim hypercube

Quantum

A RESTRICTED CLASS OF ISING MODELS

- Classical spins $s_{V, k}= \pm 1$ on N layers of a graph \mathbb{G} :

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N}\left(\sum_{(u, v) \in E(\mathbb{G})} J_{u v}^{k} s_{u, k} s_{v, k}+\sum_{v \in V(\mathbb{G})} H_{v}^{k} s_{v, k}+\sum_{v \in V(\mathbb{G})} \Gamma_{V}^{k} s_{v, k} s_{v, k+1}\right)
$$

- Equilibrium Properties via Transfer Matrix (here $\Gamma_{v}^{k}>0$):

1 Partition Function (Open Boundary):

$$
\mathcal{Z}=c\left\langle+\left.\right|^{\otimes M} \prod_{k=1}^{n} V_{k} \mid+\right\rangle^{\otimes M}, \quad V_{k}=e^{\beta \sum_{(u, v)} u_{u v}^{k} Z_{u} Z_{v}} e^{\beta \sum_{v} H_{v}^{k} Z_{v}} e^{\sum_{v} \gamma_{v}^{k} X_{v}}
$$

2 Correlation Functions (Open Boundary):

$$
\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{1}{\mathcal{Z}}\left\langle+\left.\right|^{\otimes M} V_{1} \cdots Z_{u} v_{k} \cdots Z_{u^{\prime}} v_{k^{\prime}} \cdots v_{N} \mid+\right\rangle^{\otimes M}
$$

- Dimensional Reduction: $M \times N$ classical spins to M qubits.
- N^{d} spins on d-dim hypercube $\rightarrow N^{d-1}$ qubits on d - 1-dim

Quantum
 hypercube

A RESTRICTED CLASS OF ISING MODELS

Classical

- Classical spins $s_{v, k}= \pm 1$ on N layers of a graph \mathbb{G} :

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N}\left(\sum_{(u, v) \in E(\mathbb{G})} J_{u v}^{k} s_{u, k} s_{v, k}+\sum_{v \in V(\mathbb{G})} H_{v}^{k} s_{v, k}+\sum_{v \in V(\mathbb{G})} \Gamma_{V}^{k} s_{v, k} s_{v, k+1}\right)
$$

- (NP-)Hard beyond standard 2D:

1 Additional terms: Square 2D, with fields $H_{v}^{k} \neq 0$;
2 Increased connectivity: Cubic 3D, no fields $H_{v}^{k}=0$.

- Kaufman-type/Lie-theoretic solution?

A RESTRICTED CLASS OF ISING MODELS

- Classical spins $s_{V, k}= \pm 1$ on N layers of a graph \mathbb{G} :

$$
E\left(\left\{s_{v, k}\right\}\right)=-\sum_{k=1}^{N}\left(\sum_{(u, v) \in E(\mathbb{G})} J_{u v}^{k} s_{u, k} s_{v, k}+\sum_{v \in V(\mathbb{G})} H_{v}^{k} s_{v, k}+\sum_{v \in V(\mathbb{G})} \Gamma_{v}^{k} s_{v, k} s_{v, k+1}\right)
$$

- (NP-)Hard beyond standard 2D:

1 Additional terms: Square 2D, with fields $H_{v}^{k} \neq 0$;
2 Increased connectivity: Cubic 3D, no fields $H_{v}^{k}=0$.

- Kaufman-type/Lie-theoretic solution?

Exponential time/memory:

Classical

1 For any graph \mathbb{G}, with fields, $\operatorname{dim} G_{\text {Lie }}=O\left(4^{M}\right)$
2 For any non-1D graph \mathbb{G}, no fields, $\operatorname{dim} G_{\text {Lie }}=O\left(4^{M}\right)^{(1)}$
${ }^{(1)}$ Real-imaginary correspondence based on the work of Kazi/Larocca/Farinati/Coles/Cerezo/Zeier (Unpublished)

MOTIVATION AND OBJECTIVES

Motivation

1 Partition Functions as a generalization of optimization
2 Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model

Objectives

1 More general models? Yes. Kaufman-type/Lie-theoretic solution? No.
2 Can we (efficiently) implement it on a quantum computer?

MOTIVATION AND OBJECTIVES

Motivation

1 Partition Functions as a generalization of optimization
2 Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model

Objectives

More general models? Yes. Kaufman-type/Lie-theoretic solution? No

2 Can we (efficiently) implement it on a quantum computer?

HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

- Transfer Matrix V_{k} is not unitary! No direct implementation on quantum computers

HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

- Transfer Matrix V_{k} is not unitary! No direct implementation on quantum computers
- Probabilistic Approach: Block Encodings²

- Introduce non-unitarity via ancillas and (weak) measurements

²See also: Martyn 2021, Zhu 2023, Arad 2010.

HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

- Transfer Matrix V_{k} is not unitary! No direct implementation on quantum computers
- Probabilistic Approach: Block Encodings

(1) Many ancillas, end-of-circuit measurements
(2) Few ancillas, mid-circuit measurements with reset

HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

- Transfer Matrix V_{k} is not unitary! No direct implementation on quantum computers
- Deterministic Approach: Unitary Approximation (Open Boundary)

1 Variational Imaginary Time Evolution (McArdle, 2019) as subroutine:

COMPUTATION ON A QUANTUM COMPUTER

- Many-ancilla Block-Encoding
(Periodic Boundary: $\rho \propto \mathbb{1}$, Open Boundary: $\rho=(|+\rangle\langle+|)^{\otimes M}$)
1 Partition Function via Hadamard Test with
$\Pi_{0}^{C}+\Pi_{1}^{C} U_{V}, V=\Pi_{k} V_{k}:$

$$
\mathcal{Z}=c \operatorname{Tr}(\rho V)=c^{\prime}\left(\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle\right)
$$

2 Expectation values via Hadamard Test with

COMPUTATION ON A QUANTUM COMPUTER

- Many-ancilla Block-Encoding
(Periodic Boundary: $\rho \propto \mathbb{1}$, Open Boundary: $\rho=(|+\rangle\langle+|)^{\otimes M}$)
1 Partition Function via Hadamard Test with
$\Pi_{0}^{C}+\Pi_{1}^{C} U_{V}, V=\Pi_{k} V_{k}:$

$$
\mathcal{Z}=c \operatorname{Tr}(\rho V)=c^{\prime}\left(\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle\right)
$$

2 Expectation values via Hadamard Test with

$$
\begin{aligned}
\Pi_{0}^{C}+\Pi_{1}^{C} U_{V^{\prime}}, V^{\prime} & =V_{1} \cdots Z_{u} V_{k} \cdots Z_{u^{\prime}} V_{k^{\prime}} \cdots V_{N} \\
\left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle & =\frac{\operatorname{Tr}\left(\rho V^{\prime}\right)}{\operatorname{Tr}(\rho V)}=\frac{\left\langle X_{C}\right\rangle^{\prime}-\boldsymbol{i}\left\langle Y_{C}\right\rangle^{\prime}}{\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle}
\end{aligned}
$$

COMPUTATION ON A QUANTUM COMPUTER

- Few-Ancilla Block-Encoding (Stochastic Circuit)
(Periodic Boundary: $\rho \propto \mathbb{1}$, Open Boundary: $\rho=(|+\rangle\langle+|)^{\otimes M}$)
1 Partition Function via Hadamard Test with

$$
\Pi_{0}^{C}+\Pi_{1}^{C} V, V=\prod_{k} V_{k}
$$

$$
\mathcal{Z}=c \operatorname{Tr}(\rho V)=c^{\prime} \frac{\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle}{1+\left\langle Z_{C}\right\rangle}
$$

2 Expectation values via Hadamard Test with

$$
\begin{aligned}
& \Pi_{0}^{C}+\Pi_{1}^{C} V^{\prime}, V^{\prime}=V_{1} \cdots Z_{u} V_{k} \cdots Z_{u^{\prime}} V_{k^{\prime}} \cdots V_{N} \\
& \left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{\operatorname{Tr}\left(\rho V^{\prime}\right)}{\operatorname{Tr}(\rho V)}=\frac{\left\langle X_{C}\right\rangle^{\prime}-\boldsymbol{i}\left\langle Y_{C}\right\rangle^{\prime}}{\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle} \frac{1+\left\langle Z_{C}\right\rangle}{1+\left\langle Z_{C}\right\rangle^{\prime}}
\end{aligned}
$$

COMPUTATION ON A QUANTUM COMPUTER

- Unitary Approximation
(Open Boundary: $\rho=(|+\rangle\langle+|)^{\otimes M}$)
1 Partition Function via Hadamard Test with

$$
\begin{aligned}
& U\left(\theta^{*}\right) \approx \Pi_{0}^{C}+\Pi_{1}^{C} V, V=\Pi_{k} V_{k}: \\
& \mathcal{Z}=c \operatorname{Tr}(\rho V)=c^{\prime} \frac{\left\langle X_{C}\right\rangle-\boldsymbol{i}\left\langle Y_{C}\right\rangle}{1+\left\langle Z_{C}\right\rangle}
\end{aligned}
$$

2 Expectation values via Hadamard Test with

$$
\begin{aligned}
& U(\tilde{\theta}) \approx \Pi_{0}^{C}+\Pi_{1}^{C} V^{\prime}, \\
& V^{\prime}=V_{1} \cdots Z_{u} V_{k} \cdots Z_{u^{\prime}} V_{k^{\prime}} \cdots V_{N}: \\
& \left\langle s_{u, k} s_{u^{\prime}, k^{\prime}}\right\rangle=\frac{\operatorname{Tr}\left(\rho V^{\prime}\right)}{\operatorname{Tr}(\rho V)}=\frac{\left\langle X_{C}\right\rangle^{\prime}-\boldsymbol{i}\left\langle Y_{C}\right\rangle^{\prime}}{\left\langle X_{C}\right\rangle-i\left\langle Y_{C}\right\rangle} \frac{1+\left\langle Z_{C}\right\rangle}{1+\left\langle Z_{C}\right\rangle^{\prime}}
\end{aligned}
$$

SUMMARY AND OUTLOOK

1 Transfer Matrix mapping for equilibrium classical systems on quantum systems:

- Dimensional Reduction
- Works beyond standard 2D.
- No Kaufman-type solution beyond standard 2D

2 Quantum Computer implementations suitable for NISQ:

- Block encodings: Polynomial depth, Variable number of ancillas
- Unitary Approximation: No ancillas, Model-dependent depth
- Approximation Scale?
- General inter-laver interactions?
- Role of Symmetries? Lie-theoretic properties?

SUMMARY AND OUTLOOK

2 Quantum Computer implementations suitable for NISQ
Block encodinas:
Unitary Approximation:

- Approximation Scale?
- General inter-layer interactions?
- Role of Symmetries? Lie-theoretic properties?

Thanks!

LIE THEORY IN A NUTSHELL

- The imaginary time circuit $V=\prod_{k} e^{\sum_{(u, v)} \alpha_{u, v}^{k} z_{u} z_{v}} e^{\sum_{v} \beta_{v}^{k} z_{v}} e^{\sum_{v} \gamma_{v}^{k} X_{v}}$ belongs to a (real) Lie group $G \subseteq G L\left(2^{M}, \mathbb{C}\right)$

LIE THEORY IN A NUTSHELL

- The imaginary time circuit $V=\prod_{k} e^{\sum_{(u, v)} \alpha_{u, v}^{k} Z_{u} Z_{v}} e^{\sum_{v} \beta_{v}^{k} Z_{v}} e^{\sum_{v} \gamma_{v}^{k} x_{v}}$ belongs to a (real) Lie group $G \subseteq G L\left(2^{M}, \mathbb{C}\right)$
- The infinitesimal generators $\mathcal{G}=\left\{Z_{u} Z_{v}\right\} \cup\left\{X_{v}\right\} \cup\left\{Z_{v}\right\}$ define the Lie algebra \mathfrak{g} :

$$
\mathfrak{g}=\operatorname{Span}_{\mathbb{R}}\left\{\mathcal{G} \cup\left\{\left[Z_{u} Z_{v}, X_{v^{\prime}}\right]\right\} \cup\left\{\left[X_{v}, Z_{v^{\prime}}\right]\right\} \cup \cdots\right\}
$$

- Study G (a group) by looking at \mathfrak{g} (an algebra), e.g.: dimension, invariant subspaces, decompositions, reachability.

LIE THEORY IN A NUTSHELL

- The imaginary time circuit $V=\prod_{k} e^{\sum_{(u, v)} \alpha_{u, v}^{k} z_{u} z_{v}} e^{\sum_{v} \beta_{v}^{k} z_{v}} e^{\sum_{v} \gamma_{v}^{k} X_{v}}$ belongs to a (real) Lie group $G \subseteq G L\left(2^{M}, \mathbb{C}\right)$
- The infinitesimal generators $\mathcal{G}=\left\{Z_{u} Z_{v}\right\} \cup\left\{X_{v}\right\} \cup\left\{Z_{v}\right\}$ define the Lie algebra \mathfrak{g} :

$$
\mathfrak{g}=\operatorname{Span}_{\mathbb{R}}\left\{\mathcal{G} \cup\left\{\left[Z_{u} Z_{v}, X_{v^{\prime}}\right]\right\} \cup\left\{\left[X_{v}, Z_{v^{\prime}}\right]\right\} \cup \cdots\right\}
$$

- Study G (a group) by looking at \mathfrak{g} (an algebra), e.g.: dimension, invariant subspaces, decompositions, reachability.

> First steps

How to determine \mathfrak{g} ?

FROM IMAGINARY TO REAL: WICK ROTATION

- Wick rotation is non-trivial in general: more than just $\boldsymbol{H} \rightarrow \boldsymbol{i} \boldsymbol{H}$.

FROM IMAGINARY TO REAL: WICK ROTATION

- Wick rotation is non-trivial in general: more than just $\boldsymbol{H} \rightarrow \boldsymbol{i} \boldsymbol{H}$.
- Given an involution $\theta: \mathfrak{g} \mapsto \mathfrak{g}, \theta^{2}=\mathbb{1}_{\mathfrak{g}}$ on a (semisimple) Lie algebra:

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{p}, \theta(\mathfrak{l})=+\mathfrak{l}, \theta(\mathfrak{p})=-\mathfrak{p}
$$

one can go from a Lie algebra to another (with $\mathfrak{g}_{\mathbb{C}}=\tilde{\mathfrak{g}}_{\mathbb{C}}$):

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{p} \Longleftrightarrow \tilde{\mathfrak{g}}=\mathfrak{l} \oplus \boldsymbol{i} \mathfrak{p}
$$

- Multiple choices of θ (Wick rotation) are possible!

FROM IMAGINARY TO REAL: WICK ROTATION

- Wick rotation is non-trivial in general: more than just $\boldsymbol{H} \rightarrow \boldsymbol{i} \boldsymbol{H}$.
- Given an involution $\theta: \mathfrak{g} \mapsto \mathfrak{g}, \theta^{2}=\mathbb{1}_{\mathfrak{g}}$ on a (semisimple) Lie algebra:

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{p}, \theta(\mathfrak{l})=+\mathfrak{l}, \theta(\mathfrak{p})=-\mathfrak{p}
$$

one can go from a Lie algebra to another (with $\mathfrak{g}_{\mathbb{C}}=\tilde{\mathfrak{g}}_{\mathbb{C}}$):

$$
\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{p} \Longleftrightarrow \tilde{\mathfrak{g}}=\mathfrak{l} \oplus \boldsymbol{i} \mathfrak{p}
$$

- Multiple choices of θ (Wick rotation) are possible!
- Special cases: one compact and one split real form.

LIE ALGEBRA CLASSIFICATION

Conjecture

The "thermal" Lie algebra $\mathfrak{g}=\left\langle\left\{Z_{u} Z_{v}\right\}_{(u, v) \in E(G)},\left\{X_{v}\right\}_{v \in V(G)}\right\rangle_{\text {Lie }}$ for classical layers of arbitrary graphs G (no fields) is the split real form of the Multi-Angle QAOA ansatz.
(Imaginary Time) Disordered Ising model on:

- 2D Rectangular lattice with periodic boundary conditions:
$\mathfrak{g}=\mathfrak{s o}(M, M) \oplus \mathfrak{s o}(M, M)$
- 3D (even) Cubic lattice Ising model:
$\mathfrak{g}=\mathfrak{s p}\left(2^{M-1}, \mathbb{R}\right) \oplus \mathfrak{s p}\left(2^{M-1}, \mathbb{R}\right)$
(Real Time) Multi-Angle QAOA on ${ }^{(1)}$:
- Cycle Graph:
$\mathfrak{g}=\mathfrak{s o}(2 M) \oplus \mathfrak{s o}(2 M)$
- (Even) Bipartite Graph:

$$
\mathfrak{g}=\mathfrak{s p}\left(2^{M-1}\right) \oplus \mathfrak{s p}\left(2^{M-1}\right)
$$

${ }^{(1)}$ (Unpublished) Work by Kazi/Larocca/Farinati/Coles/Cerezo/Zeier, 2024

LIE ALGEBRA CLASSIFICATION

Result \#1

The "thermal" Lie algebra $\mathfrak{g}=\left\langle\left\{Z_{u} Z_{v}\right\}_{(u, v) \in E(G)},\left\{X_{v}, Z_{v}\right\}_{v \in V(G)}\right\rangle_{\text {Lie }}$ for classical layers of any connected graph G (with fields) is $\mathfrak{s l}\left(2^{M}, \mathbb{R}\right), M=|V|$.

Result \#2

The "thermal" Lie algebra $\mathfrak{g}=\left\langle\left\{Z_{u} Z_{v}\right\}_{(u, v) \in E(G)},\left\{X_{v}\right\}_{v \in V(G)}\right\rangle_{\text {Lie }}$ for classical layers of arbitrary graphs G (no fields) has the same dimension as that of the Multi-Angle QAOA ansatz.

