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The Context

Optimization, Partition Functions and Quantum Computers
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THE CONTEXT

Classical Problems...
Energy

= Binary Optimization (QUBO/MaxCut) is hard
= Many Classical Approaches: (VW
= Heuristic Exact Solvers (e.g. Gurobi, QuBowl)
= Hardware Solvers (e.g. Ising Machines) Configuration
= Monte Carlo (e.g. Simulated Annealing)

= More...

= State-of-the-art: ~ 10* vertices (sparse graphs)
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THE CONTEXT Classical Problems...

Energy

= Quantum Approaches: (VW
= Quantum Annealing (D-Wave)
= Variational Algorithms (QAOA, VQE) Configuration
= |Imaginary Time Evolution (VITE, QITE)
= And many more

...with Quantum Solutions
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THE CONTEXT

Classical Problems...

Energy
= Quantum Approaches (VW /\ \ /|
Configuration
= Classical-to-Quantum Optimization Problem: --with Quantum Solutions
{80} € (0,1 = ) € (€)™ S T e U
?nn H({s/}) — m|n (W|H|) o) —| [ A—e—
0) Ry (1)

= State-of-the-art: ~ 10° — 10° qubits < 10*
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THE CONTEXT

Classical Problems...

Energy
= Quantum Approaches (VW /\ \/I ./
Configuration
= Classical-to-Quantum Optimization Problem: --with Quantum Solutions
{sv} € {0, 1}" = ) € (C?)*M o
:{mn H({s/}) — m|n (W|H|) o) — [ A—e—
0) Ry (1)

= State-of-the-art: ~ 102 — 10° qubits < 10*

= NISQ: Limited Memory (and Circuit Depth). 0 —{Ax)
Alternative road?
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BEYOND OPTIMIZATION Classical Problems...

Energy
= Physics-inspired approach:

Finite temperature Ising models W ;\ ayia

= Still hard at finite temperature Confiuration

= Classical Approaches:

= Monte Carlo Methods
= Tensor Networks

...with Quantum Solutions

= Hardware Solvers (Janus I1) l0) —
= And many more U(ax)
o o
0) Ry (51)

10) —{ Ax(2)
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BEYOND OPTIMIZATION Classical Problems...

Energy
= Physics-inspired approach:

Finite temperature Ising models W ;\ v

= Still hard at finite temperature Confiuration

...with Quantum Solutions

0
U(an)
K I e
= Alternative Classical-to-Quantum Mapping: 0y — Ao an)
Solution of 2D Ising Model V(az)
10) —{ Ax(8)
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The Prelude

The Classical 2D Ising Model
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THE PRELUDE - THE CLASSICAL 2D ISING MODEL

= Classical spins on a 2D lattice with s, x = +1 and energy

N M ° .);_j% e o
E({Sv k} Z Z(Jsv,ksvH,k + rSv,kSvA,k+1 )7 J7 r>o0 -~ oo . .
k=1 v=1 N e o o o oir

= Equilibrium Properties, p({sy x}) o< e PE{s}):
Partition Function: 2 =37, e PEUsvk}) M
Correlation Functions: (Su xSy w) = + (s, ) SukSul ke e BE{sv k)
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THE PRELUDE - THE CLASSICAL 2D ISING MODEL

= Classical spins on a 2D lattice with s, x = +1 and energy Classical
J
N M ° H e o
E({svx}) == DD (ISvkSusth + TSuvkSuks1), J:T >0 DR
k=1 v=1 N . oo d .ir
= Transfer Matrix Solution (Onsager 1944, Kaufman 1949): ® o o o o
Partition Function: Z = cTr(H,’:’:1 V), V = % X 221 g7 TVl Xa VR
Correlation Functions: (Sy xSy w) = % Tr(V---Z,V---Zy V- V) {
. . . ) Quantum
= (Floguet) Imaginary Time Evolution of the Quantum Chain ~ = } In(coth(r))
= Only M qubits for M x N spins! 7
‘ .o
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THE PRELUDE - THE CLASSICAL 2D ISING MODEL

= Classical spins on a 2D lattice with s, x = +1 and energy Classical
J
N M L] H ° °
E({svk}) = ZZ(JSv,kSv+1,k + TSy kSvki1), J,T >0 Ll
k=1 v=1 N . oo d .ir
= Transfer Matrix Solution (Onsager 1944, Kaufman 1949): ® o o o o
Partition Function: Z = CTr( p V), V = P50 B2 gy il X M
Correlation Functions: (Sy xSy w) = = Tr(V - Z,V -+ Zy V- V) {
. N . . . Quantum
= Diagonalization via Representation Theory of Lie Groups/Algebras: — 1 In(coth(Br))
(aka Jordan-Wigner and Free Fermions) p: SO(2M, (C) x2 — ;\/l(ZM. C)
8J
t1 VA4
T=P-| - P V=p(T)=p(P)| - p(PY) = 2
t4M Vom
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MOTIVATION AND OBJECTIVES

Motivation

Partition Functions as a generalization of optimization
Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model'

More general models? Kaufman-type/Lie-theoretic solution?

1See also: Arad 2010, De las Cuevas 2011, Iblisdir 2014, Matsuo 2014
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A RESTRICTED CLASS OF ISING MODELS

; ; Classical
= Classical spins s, x = =1 on N layers of a graph G: . o
sv,k+1 A
k k k O : V
E({svi}) = - Z Z JuvSukSv.k + Z Hysyk + Z [ySvkSv,k+1 - o |
k=1 \(u,v)€E(G) veVv(G) veV(G) Svk L[
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A RESTRICTED CLASS OF ISING MODELS

= Classical spins s, x = =1 on N layers of a graph G:

E({svx}) = — Z( ST dlsuksik+ D> Hisk+ Fﬁsv,ksmm)
(

k=1 \ (u,v)eE(G) veV(G) veVv(c)

= Equilibrium Properties via Transfer Matrix (here I'% > 0):
Partition Function (Periodic Boundary):

n
c k F: k k

Correlation Functions (Periodic Boundary):
1
(SukSu k1) = =z Tr(Vi--- Zy V- Zy Vir -+ - Vi)
= Dimensional Reduction: M x N classical spins to M qubits.

= N9 spins on d-dim hypercube — N°~' qubits on d — 1-dim
hypercube

Classical
® e ®
sv,k+1 A
(oS
[ ] ® | L ]
Sv.k A
NEDD
[ ] @ | ®
Sv,k 1 ™~ A
ONEBD



A RESTRICTED CLASS OF ISING MODELS

= Classical spins s, x = 1 on N layers of a graph G: , Classical
Sv k+1
k K K O : O
E({svi}) = - Z Z JuvSukSv.k + Z Hysyk + Z [ySvkSv,k+1 - o |
k=1 \(u,v)€E(G) veV(G) vev(G) Svk O A
= Equilibrium Properties via Transfer Matrix (here I'% > 0): L . i
Partition Function (Open Boundary): Sv,k—16 _ A

n
k c k k
Z=c <+|®M | | Vk |+>®M ) VK — eBZ(“'V) Juvzuzved >y HVZveEV Yy Xv
k=1

Correlation Functions (Open Boundary): Quantum

]
(Suksurw) = Z (HI Vi Zy Vi Zy Vi - Vi [ 1)

o\ ) @\ ®
sv) W .
= Dimensional Reduction: M x N classical spins to M qubits. £
= N9 spins on d-dim hypercube — N9~ qubits on d — 1-dim

hypercube



A RESTRICTED CLASS OF ISING MODELS

. ; lassical

= Classical spins s, x = 1 on N layers of a graph G: , Classica
sv,k+10 A

E({svk}) = Z Z Jbvsu,ksv,k + Z H\’/(Sv,k + Z rl\;sv,ksv‘,kﬂ - a v
k=1 \(u,v)€EE(G) veV(G) veV(G) Sv.k O 0 A

= (NP-)Hard beyond standard 2D: | . i
Additional terms: Square 2D, with fields Hj # 0; SV"‘—‘O — A

Increased connectivity: Cubic 3D, no fields H¥ = 0.

» Kaufman-type/Lie-theoretic solution?




A RESTRICTED CLASS OF ISING MODELS

. . Classical

= Classical spins s, x = &1 on N layers of a graph G: , iasslea
sv,k+16 e A

E({Sv,k}) = Z Z Jbvsu‘ksv‘k + Z H\l/(sv,k + Z rCSV'kSV7k+1) . Jy v
k=1 \(u,v)€E(G) veV(G) veV(G) Svk O . A

= (NP-)Hard beyond standard 2D: | 7
Additional terms: Square 2D, with fields Hj # 0; SV"‘—‘O — A

Increased connectivity: Cubic 3D, no fields H¥ = 0. !

» Kaufman-type/Lie-theoretic solution?
Exponential time/memory: Quantum

For any graph G, with fields, dim G = O(4")

e | ) @\ ®
For any non-1D graph G, no fields, dim Gpe = O(4M) M I5) M

()Real-imaginary correspondence based on the work of
Kazi/Larocca/Farinati/Coles/Cerezo/Zeier (Unpublished)



MOTIVATION AND OBJECTIVES

Motivation

Partition Functions as a generalization of optimization
Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model

More general models? Yes. Kaufman-type/Lie-theoretic solution? No.
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MOTIVATION AND OBJECTIVES

Motivation

Partition Functions as a generalization of optimization
Qubit-efficient Classical-to-Quantum Mapping for 2D Ising Model

Can we (efficiently) implement it on a quantum computer?
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HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

= Transfer Matrix Vj is not unitary! No direct implementation on quantum computers
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HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

= Probabilistic Approach: Block Encodings?

0)4 — —

Up (]vmw) 0) 4+ [#) [1) 4
)

= Introduce non-unitarity via ancillas and (weak) measurements

2See also: Martyn 2021, Zhu 2023, Arad 2010.
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HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

= Probabilistic Approach: Block Encodings

Imaginary Time (Non-Unitary) Real Time (Unitary)

{01}
PR 10) , — — . -
(1) - g eitiXa it XaP
Vi= -
{0,1}
pmmmm [0)4 — — —-/7( [0y, — -
2 — ! eiti Xa it XaP - "

Re=e"", Pe{Z.2,,Z,, X}
(1) Many ancillas, end-of-circuit measurements

(2) Few ancillas, mid-circuit measurements with reset
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HOW TO IMPLEMENT IMAGINARY TIME EVOLUTION?

= Deterministic Approach: Unitary Approximation (Open Boundary)
Variational Imaginary Time Evolution (McArdle, 2019) as subroutine:

Imaginary Time (Non-Unitary) Real Time (Unitary)

|v) e ~ ) ue)

Ot —

¥ [ O

Ar, Xi

He {Z(u‘v) JuvZqu, Zv HVZV7 EV"/VXV}

5.1(0/0, + H=E) ()| =0 = 6=A""-X
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COMPUTATION ON A QUANTUM COMPUTER

= Many-ancilla Block-Encoding
(Periodic Boundary: p oc 1, Open Boundary: p = (|4) (+])®")

Partition Function via Hadamard Test with
I"I§+I'I1CUV, V = Hk Vk:

Z=cTr(pV)=c({Xc) —i{Ye))
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COMPUTATION ON A QUANTUM COMPUTER

= Many-ancilla Block-Encoding

(Periodic Boundary: p o 1, Open Boundary: p = (|+) (+])®")

Partition Function via Hadamard Test with
I'IOC + |_|1CU\/7 V = Hk Vk:

Z=cTr(pV)=c({Xc) —i{Ye))

Expectation values via Hadamard Test with
NG + N0, V' = Vi ZVier - Zy Vi -+ Viy:

_ Tr(pV) _ (Xo) —i (Yo
uasw) = T = el = 100
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COMPUTATION ON A QUANTUM COMPUTER

= Few-Ancilla Block-Encoding (Stochastic Circuit)

(Periodic Boundary: p o 1, Open Boundary: p = (|+) (+])®")

Partition Function via Hadamard Test with
ng+ngv, v=r[, Vi

(Xc) —i(Ye)

Z=cTr(pV)=rc 15 (Zo)

Expectation values via Hadamard Test with
I'Ig+ﬂfv/, V' = V4 ~~'Zqu“~Zu/Vk/ - W

Tr(pV') _ (Xo)' —i(Ye)' 1+ (Ze)

(SukSu k) = Tr(pV) — (Xe)—i(Ye) 1+ (Zo)
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COMPUTATION ON A QUANTUM COMPUTER

= Unitary Approximation
(Open Boundary: p = (|+) (+))®")

Partition Function via Hadamard Test with
ue*)~ng+ngv, V=TI W

Z=cTr(pV)= C/%(izg/c)

Exgectation values via Hadamard Test with
u@)~ng+ngv,
V= Vi ZuVi Zy Vi -+ Vi

Tr(pV') _ (Xo)' —i(Ye)' 1+ (Ze)

kS k) = FeV) = o) = (Vo) 1+ (Zo)
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SUMMARY AND OUTLOOK

Transfer Matrix mapping for equilibrium
classical systems on quantum systems:
= Dimensional Reduction
= Works beyond standard 2D.
= No Kaufman-type solution beyond standard 2D

Quantum Computer implementations suitable for NISQ:

= Block encodings: Polynomial depth, Variable number of ancillas
= Unitary Approximation: No ancillas, Model-dependent depth
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SUMMARY AND OUTLOOK

= Approximation Scale?
= General inter-layer interactions?
= Role of Symmetries? Lie-theoretic properties?
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Thanks!

PnsZ M L[..@ 9 JULICH
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To appear in ReAQCT °24 Proceedings



LIE THEORY IN A NUTSHELL

= The imaginary time circuit V = [], eXwv “w?% g¥. 5iZ. g5, %X belongs to
a (real) Lie group G C GL(2",C)
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LIE THEORY IN A NUTSHELL

= The imaginary time circuit V = [], eXwv “w?% g¥. 5iZ. g5, %X belongs to
a (real) Lie group G C GL(2",C)

= The infinitesimal generators G = {Z,Z,} U {X,} U {Z,} define the Lie algebra g:
g = Spang{G U {[Z,Z/, Xv/ ]} U{[Xy, Z/]}U---}

= Study G (a group) by looking at g (an algebra), e.g.: dimension, invariant subspaces,
decompositions, reachability.
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LIE THEORY IN A NUTSHELL

= The imaginary time circuit V = [], eXwv “w?% g¥. 5iZ. g5, %X belongs to
a (real) Lie group G C GL(2",C)

= The infinitesimal generators G = {Z,Z,} U {X,} U {Z,} define the Lie algebra g:
g = Spang{G U {[Z,Z/, Xv/ ]} U{[Xy, Z/]}U---}

= Study G (a group) by looking at g (an algebra), e.g.: dimension, invariant subspaces,
decompositions, reachability.

First steps

How to determine g?
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FROM IMAGINARY TO REAL: WICK ROTATION

= Wick rotation is non-trivial in general: more than just H — iH.
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FROM IMAGINARY TO REAL: WICK ROTATION

= Wick rotation is non-trivial in general: more than just H — iH.

= Given an involution : g+ g, #2 = 1, on a (semisimple) Lie algebra:
one can go from a Lie algebra to another (with g = §¢):

g=19p < g=I1ip

= Multiple choices of 6 (Wick rotation) are possible!
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FROM IMAGINARY TO REAL: WICK ROTATION

= Wick rotation is non-trivial in general: more than just H — iH.

= Given an involution : g+ g, #2 = 1, on a (semisimple) Lie algebra:
one can go from a Lie algebra to another (with g = §¢):

g=19p < g=I1ip
= Multiple choices of 6 (Wick rotation) are possible!

= Special cases: one compact and one split real form.
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LIE ALGEBRA CLASSIFICATION

The "thermal” Lie algebra g = ({ZuZ, } (u,v)cE(G), { Xv}vev(a))Lie fOr classical layers of arbitrary
graphs G (no fields) is the split real form of the Multi-Angle QAOA ansatz.

(Imaginary Time) Disordered Ising model on: (Real Time) Multi-Angle QAOA on("):

= 2D Rectangular lattice with = Cycle Graph:
periodic boundary conditions: g = s0(2M) & so(2M)
g =so(M,M) @ so(M, M)

= 3D (even) Cubic lattice Ising model: = (Even) Bipartite Graph:
g=sp(2"".R) & sp(2"",R) g=sp(2"" ") & sp(2¥)

() (Unpublished) Work by
Kazi/Larocca/Farinati/Coles/Cerezo/Zeier, 2024
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LIE ALGEBRA CLASSIFICATION

Result #1

The "thermal” Lie algebra g = ({ZuZ } (u,v)eE(6), {Xv, Zv}vev(a))Lie fOr classical layers of any
connected graph G (with fields) is sI(2¥ R), M = | V/|.

Result #2

The "thermal” Lie algebra g = ({ZuZ, } (u,v)eE(G), {1 Xv}vev(a))Lie fOr classical layers of arbitrary
graphs G (no fields) has the same dimension as that of the Multi-Angle QAOA ansatz.
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