

Universidad del País Vasco

Euskal Herriko Unibertsitatea

AN OVERVIEW ON QUANTUM ALGORITHMS FOR AMPLITUDE ENCODING OF CLASSICAL **DATA INTO QUANTUM COMPUTERS**

Javier Gonzalez-Conde

University of the Basque Country EHU Quantum Center Leioa, Spain

> 20th June 2024 javier.gonzalezc@ehu.eus

Amplitude Embedding

javier.gonzalezc@ehu.eus

An overview on amplitude encoding

Brief historical review

Grover and Rudolph (2002)

- Iterative and deterministic
- Real valued functions

[Proc.Roy.Soc.Lond. A454 (1998)] [arXiv preprint quant-ph/0208112 (2002)] [arXiv preprint quant-ph/0407102, (2004)]

×min

Grover and Rudolph (2002)

- Positive real valued function
- Iterative and deterministic method

javier.gonzalezc@ehu.eus

An overview on amplitude encoding **Grover and Rudolph**

How are the rotations implemented?

Oracular Access (ancillas for m bit precision)	Arithmetic

javier.gonzalezc@ehu.eus

Overview

$\mathcal{O}_{GR}: |l\rangle |0\rangle^{\otimes m} \to |l\rangle |\theta_{bin(l)}^{(k-1)}\rangle_{m}$ $\mathfrak{rot} |\theta\rangle |0\rangle := \sin(\theta) |\theta\rangle |0\rangle + \cos(\theta) |\theta\rangle |1\rangle$

javier.gonzalezc@ehu.eus

Overview

javier.gonzalezc@ehu.eus

Overview

javier.gonzalezc@ehu.eus

Overview

Our first protocol Motivation

$$\theta_{bin(l)}^{(k-1)} = 2 \arccos\left(\sqrt{\frac{\int_{x_{min}+(l-1/2)\delta_k}^{x_{min}+(l-1)\delta_k} f(x)dx}{\int_{x_{min}+(l-1)\delta_k}^{x_{min}+l\delta_k} f(x)dx}}\right)$$

javier.gonzalezc@ehu.eus

Our first protocol Angles Clustering

We cluster the all the angles from the block $k_0 + 1$ onwards and find out how it affects on the fidelity

javier.gonzalezc@ehu.eus

javier.gonzalezc@ehu.eus

Overview

EHU QC EHU Quantum Center

Variational Protocol

Motivation

javier.gonzalezc@ehu.eus

Overview

javier.gonzalezc@ehu.eus

Overview

javier.gonzalezc@ehu.eus

Overview

|20th June 2024angle

3

4

Qubit q

5

Linear Function

Exact MPS
$$\chi = 2$$

$$|\Phi_L\rangle = \sum_{j_0\cdots j_{n-1}} (j_0/C \ 1) \begin{pmatrix} 1 & 0\\ 2j_1/C & 1 \end{pmatrix} \cdots \begin{pmatrix} 1\\ 2^{n-1}j_n/C \end{pmatrix} |j_{n-1}\cdots j_0\rangle.$$

Approximated MPS 1.25 1.2 1.15 1.1 1.05 θ_q 1 $\chi = 1$ 0.95 0.9 $\left| \mathbf{O} \right\rangle - \left| R_y(\theta_{n-2}) \right|$ 0.85 0.8 0.75 2

javier.gonzalezc@ehu.eus

Amplitude encoding QSVT

Encodes the linear function in amplitudes

javier.gonzalezc@ehu.eus

