

A NAÜs termikus neutron befogási hatáskeresztmetszet adatbázis felújítása

Belgya Tamás, Maróti Boglárka, Nukleáris Analitikai és Radiográfiai Laboratórium (NAL) HUN-REN Energiatudományi Kutatóközpont, Budapest

Révay Zsolt, Technische Universität München (TUM) · Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)

... a hatáskeresztmetszetek kezében vagyunk ...

XVII. Magyar Magfizikus Találkozó 2024. szeptember 03-05.

Where science meets matter

Bevezetés

A nukleáris adatok fontossága:

A termikus neutron befogási hatáskeresztmetszetek kiemelkedően fontosak a nukleáris reaktorok működése és tervezése szempontjából:

- Hasadási termékek, aktanidák, szerkezeti és könnyű elemek aktiválásának meghatározása és nyilvántartása
- A termikus és rezonancia neutron befogás számítása a rezonancia paraméterek ismeretében, összevetése a kísérleti értékekkel pl. differenciális és integrális hatáskeresztmetszetekkel, hasadási hozamokkal
- Az (n_{tb}, γ) értékelése nem rezonancia paramétereken alapul
- Nem mérhető hatáskeresztmetszetek (instabil magok) szükségesek a kiégett fűtőelemek aktivitásának meghatározásához, vagy más pl. asztrofizikai számítások elvégzéséhez
- Mit tehetünk? Modellek paramétereinek szisztematikája?

IAEA.org | NDS Mission | Mirrors: India | China | Rus Nuclear Data Services Search Gc Provided by the Nuclear Data Section Hot Topics » IAEA-CIELO • TENDL-2023 • JENDL-5 • ENDF/B-VIII.0 News » Pointwise2020//TENDL-2019 Data Explorer - Nuclear Reaction Data Explorer [page] NEW TALYS-2.0 - Nuclear reaction model code and related packages [page] 📩 Download data, codes, **IDB** - An International Database of Reference Gamma Spectra [page] packages Stopping Power - Electronic Stopping Power of Matter for Ions [page] NNDC Web-API for EXFOR/ENDF/IBANDL - software search/download for EXFOR/ENDF/IBANDL [page] National Nuclear Data Brockhaven, Ouick Links Main All Reaction Data Structure & Decay by Applications Doc & Codes Index Events Links News ADS-Lib Atomic Mass Reactor Physics (particle transport, fuel cycle, transmutation, shielding Data Centre Data Bank Atomic and molecular data for fusion research Beta-delayed neutrons Ion Beam and Thin Layer Activation Analysis CINDA **Dosimetry reactions** Charged CJD Institute f particle refe **Neutron Activation Analysis** rence cross PGAA - Prompt gamma rays from neutron capture section NGATLAS - atlas of neutron capture cross sections CoNDERC Thermal neutron capture gamma rays - by target and by energy DICEBOX NuDat-3 - selected evaluated nuclear structure data DROSG-2000 Events Nuclear Medicin DXS Decay Data **Activation Related Libraries** Library for **Neutron Source Reactions** Actinides EE-View IAEA Nuclear Data Section EMPIRE-3.2 ()IAEA-Atomic Computer IAEA-NA Meetings Newsletters Coordinated Technical Nuclea Nuclear Internationa and NDS Codes Departmen Workshops Research Structure Documents Reaction Mission Molecular Network of of Projects & Decay INDC Reports Data Nuclear Nuclear Data Center Data Publication Data Sciences Vetwor Network and Evaluator Applications © Copyright 2007-2024, International Atomic Energy Agency - Nuclear Data Section. Telephone (+431) 2600-0. Racsimile (+431) 2600-7. Errail: nds.contact-point@iaea.org. Read our Disclaimer Last Updated: 30-August-2024 Web design: V.Zerkin, IAEA, 200

EXFOR, Holden 1991-1993 (compilation) + RIPL, k0 neutron activation, Atlas of Neutron resonances BNL-325, 2006, 2018, EAF-2010, JUKO Research reports 2000-2017, Sukhoruchkin2009 and 2015, Standard, EGAF, Systematics, ENDF/B, JEF(F), JENDL...

Live Chart of Nuclides

nuclear structure and decay data ms: *329*

JANIS Web

Online version, no Java required

Adatforrások:

Minden elérhető publikált adat felhasználása Példa táblázat:

62 151 0)	1.51400E+04	3.00000E+02	Mug	h18	Sm151
ripl		1.52000E+04	3.00000E+	02	JUKO	
mugh06		1.51700E+04	3.00000E+	-82	Mugh86	
mugh18		1.51400E+04	3.00000E+	82	Mugh18	
sukhoruc	hkir	1.51700E+04	2.99000E+	82	Sukhoruchkin	
exfor		1.20000E+04	0.0000E+	00	Melaika_1955_12086003	
exfor		1.51700E+04	3.00008E+	02	Mughabghab_2006_V10022003	1
exfor		1.50200E+04	5.25000E+	82	Marrone_2006_22893007	
cendl3.1		1.51239E+04	CE	=	9.98937E-01	Library values obtained
endfb8.0	1	1.51379E+04	CE	22	9.99861E-01	from point wise files
jeff3.3		1.51294E+04	CE		9.99300E-01	from point wise files
jendl4.0	1	1.51598E+04	CE	=	1.00131E+00	(PREPRO's RECENT module)
tendl.20	19	1.51334E+04	L CE	=	9.99564E-01	(
62 152 0	1	2.06000E+02	3.00000E+00	Mug	h18	Sm152
ripl		2.06000E+02	1.50000E+	01	JUKO	
mugh06		2.86000E+02	6.00000E+	99	Mugh06	
mugh18		2.06000E+02	3.00000E+	-89	Mugh18	
sukhoruc	hkir	2.06000E+02	5.00008E+	69	Sukhoruchkin	
exfor		1.38000E+02	2.76000E+	01	Seren_1947_11447096	
exfor		2.00000E+02	6.00000E+	99	Pattenden_1958_21325012	
exfor		2.24000E+02	7.00000E+	99	Tattersall_1960_20638048	
exfor		2.15000E+02	1.00000E+	01	Fehr_1960_12023006	
exfor		2.09000E+02	9.0000E+	-89	Cabell_1962_20627002	
exfor		2.09100E+02	2.07000E+	-01	Bernabei_1962_12099002	
exfor		2.86000E+02	6.0000E+	99	Mughabghab_2006_V1002204:	1
exfor		2.04800E+02	6.32832E+	99	Karadag_2007_22964002	
exfor		2.38930E+02	1.91100E+	01	Nyarko_2010_31698006	
exfor		2.07300E+02	9.40008E+	66	Agbemava_2011_31717003	
exfor		2.07000E+02	1.00000E+	60	FarinaArbocco_2013_23266	134
exfor		2.12000E+02	8.0000E+	69	Nguyen_2017_30843002	
cendl3.1	1	2.06640E+02	2 CE	=	1.00311E+00	
endfb8.0	1	2.05946E+02	2 CE	=	9.99738E-01	
jeff3.3		2.05974E+02	CE CE	=	9.99874E-01	
jendl4.0	•	2.05842E+02	CE CE	=	9.99233E-01	
tendl.20	119	2.05971E+02	2 CE	=	9.99859E-01	

Sorrendben a következő forrásadatok elfogadása

- 1. Kayzero adatbázis
- 2. Mughabghab 2018 Atlasz
- 3. Sukhoruchkin 2015 Atlasz
- 4. Mughabghab 2006 Atlasz
- 5. RIPL vagy Kopecky adatbázis
- 6. EXFOR (a legújabb értékek)

MACS esetében a sorrend

- 1. Mughabghab 2018 Atlasz
- 2. Sukhoruchkin 2015 Atlasz
- 3. KADONIS adatbázis
- 4. EXFOR (a legújabb értékek)

Módszer. Ha 1 nem léteik, akkor 2, ha ez sem létezik a 3, és így tovább

Szükséges a nemzetközi ajánlás, világos szabályok, nyomon követhetőség és az adatok elérhetősége Komputer formátum, riportok / cikkek

Hozzájárulásunk az adatbázishoz és a validáláshoz Where science meets matter

Mérőberendezéseink az adatokhoz

PGAA és NAA könyvtár (adatbázis) mérése és validálása σ_{γ} és \underline{k}_{0} táblázatok valamennyi mérhető elemre

(A) IAEA

Sorrendben a következő forrásadatok elfogadása

- 1. Kayzero adatbázis (BNC az egyik fő hozzájáruló)
- 2. Mughabghab 2018 Atlasz
- 3. Sukhoruchkin 2015 Atlasz
- 4. Mughabghab 2006 Atlasz
- 5. RIPL vagy Kopecky adatbázis
- 6. EXFOR (a legújabb értékek)

MACS esetében a sorrend

- 1. Mughabghab 2018 Atlasz
- 2. Sukhoruchkin 2015 Atlasz
- 3. KADONIS adatbázis
- 4. EXFOR (a legújabb értékek)

Módszer. Ha 1 nem léteik, akkor 2, ha ez sem létezik a 3, és így tovább

Szükséges a nemzetközi ajánlás, világos szabályok, nyomon követhetőség és az adatok elérhetősége Komputer formátum, riportok / cikkek

The PGAA kísérleti berendezés

Where science meets matter

A NIPS-NORMA és a PGAA CAD rajza

A PGAA berendezéssel mért ¹¹³Cd(n,γ)¹¹⁴Cd normál spektrum és a detektor válaszfüggvény és hatásfokkal korrigált spektrum

A komaparátor módszer és a k₀ érték kapcsolata

Egy homogén, vékony mintát (szignifikánsan nem abszorbeáló) homogén neutronnyalábbal besugározva a neutron befogása során keletkező gerjesztett közbenső mag leggyakrabban gamma kaszkád kibocsátásával szabadul meg a gerjesztési energiájától. Mérve a γ-k energiáját és intenzitását

$$A_{\gamma}/t = n \, \sigma_{\gamma} \varphi \varepsilon$$

információt kapunk a σ_{γ} parciális neutron befogási hatáskeresztmetszetéről. Ahol a $\sigma_{\gamma} = \sigma_0 \theta P_{\gamma}$

Komparálásnál két izotóp vegyületét vagy homogén keverékét besugározva kiszámolható a egyismert $\sigma_{\gamma c}$ hatáskeresztmetszetből az ismeretlen $\sigma_{\gamma x}$ hatáskeresztmetszet

$$\frac{A_{\gamma x}}{A_{\gamma c}} = \frac{n_x \sigma_{\gamma x} \varepsilon(E_{\gamma x})}{n_c \sigma_{\gamma c} \varepsilon(E_{\gamma c})}; \ \sigma_{\gamma x} = \sigma_{\gamma c} \frac{A_{\gamma x} n_c \varepsilon(E_{\gamma c})}{A_{\gamma c} n_x \varepsilon(E_{\gamma x})}$$

A számítás különösen pontos lehet sztöchiometrikus nagytisztaságú vegyületekre, de a bizonytalanság nem lehet kevesebb a hatáskeresztmetszetek hányadosának bizonytalanságánál.

Problémák: inhomogén és/vagy vastag minta, nem 1/v hatáskeresztmetszetű anyagok

A
$$k_0$$
 definiciója: $k_0 = \frac{\sigma_{\gamma x/M_X}}{\sigma_{\gamma c/M_c}}$, ami világosan mutatja PGAA és az NAA közötti szoros összefüggést

- A_{γ} beütésszám
- t mérési idő
- n izotóp darabszám
- arphi neutron fluxus
- ϵ detektor hatásfok
- $\sigma_0\,$ a 2200 m/s hat. ker.
- heta izotópgyakoriság
- P_{γ} bomlási valószínűség
- M_x x elem atomtömege

A teljes hatáskeresztmetszet meghatározása

Módszer	Egyenlet	Megjegyzés
1	$\sigma_0 = \frac{\sigma_{\gamma}}{\theta P_{\gamma}}$	P_{γ} ismernünk kell, például a béta-bomlásból, ha a neutron befogó atommag instabil.
2	$\sigma_0 = \sum_{f=1}^{n-1} \sigma_{\gamma \ C \to f} (1 + \alpha_f + PCC_f)$	A befogási állapotból származó összes elsődleges átmenet összege viszonylag egyszerű bomlási sémájú magokra használható. A módszerekhez ismerni kell a ICC konverziós és a párkonverziós PCC együtthatókat a 2-5 esetekben
3	$\sigma_0 = \sum_{i=2}^n \sigma_{\gamma \ i \to g.s.} (1 + \alpha_i + PCC_i)$	Az összes alapállapoti átmenet összege viszonylag egyszerű sémájú magokra használható.
4	$Q = min\left(\sum_{\substack{1 \leq f \leq n-1 \\ 1 \leq s \leq n-1}} (T_f - \sigma_0) w_{f,s}(T_s - \sigma_0)\right)$	Jól kiegyensúlyozott és viszonylag egyszerű bomlási séma. Lásd Ref. T és w meghatározásához.
5	$\sigma_0 = \sum_i E_i \sigma_{\gamma i} (1 + \alpha_i + PCC_i) / B_n$	Az energiával súlyozott összeget bármely bonyolult gamma-spektrumú atommagra használhatjuk, B _n a kötési energia.

Belgya, T., Improved accuracy of gamma-ray intensities from basic principles for the calibration reaction ${}^{14}N(n,\gamma){}^{15}N$. Physical Review C, 74, 024603-1-8(2006)

Példa egyszerű bomlási sémára ⁵⁴Fe(n,γ)⁵⁵Fe

🚰 File Edit Operation Data AddView... Configuration Window Help

Példa egyszerű bomlási sémára ⁵⁴Fe(n,γ)⁵⁵Fe

Where science meets matter

Mughabghab értékelése

Izotóp	gyakoriság %	σ_0 (b)	bizonytalanság
Fe-00		2.56±0.03	1%
Fe-54	5.845	2.25±0.18	8%
Fe-56	91.754	2.59±0.14	5%
Fe-57	2.119	2.48±0.3	12%
Fe-58	0.282	1.28±0.05	4%

Ennek az alapvető szerkezeti anyagnak az hatáskeresztmetszet bizonytalansága meglepő

Új mérést végeztek erősen dúsított izotópokon (^{54,56,57}Fe) az EFNUDAT projektben (F. Gunsing) Budapesten, a BNC PGAA létesítményében.

- A vékony fémmintát a CERN-től kaptuk a tisztaság ellenőrzésére
- Azonban ezekből a kísérletekből a σ_0 neutron
- hatáskeresztmetszete is meghatározható
- Az adatok kiértékelése Richard B, Firestone (LBNL)

közreműködésével történt.

Elsődlegesek összege	2.26(5) b
Alapállapotra menők összege	2.32(5) b
Energiával súlyozott összeg	2.26(4) b
Mughabghab	2.25(18) b

-Az új értékek egyeznek Mughabghab értékével.- A bizonytalanság 2%-ra csökkent

Kumulatív energia súlyozott összeg alkalmazása a ²⁷Al(n,γ) illesztett csúcsaira különböző Nitrogén hatásfokokkal

Belgya, T. (2008). New gamma-ray intensities for the ¹⁴N(n,γ)¹⁵N high energy standard and its influence on PGAA and on nuclear quantities. *Journal of Radioanalytical and Nuclear Chemistry*, 276(3). https://doi.org/10.1007/s10967-008-0607-9

A Kumulatív energia súlyozott összeg alkalmazása a ¹⁹⁷Au(n,γ)¹⁹⁸Au detektor átviteli függvénnyel korrigált (unfolded) spektrumra

Belgya, T., & Szentmiklósi, L. (2021). Monte-Carlo calculated detector response functions to unfold radiative neutron capture spectra. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 991(December 2020), 165018. https://doi.org/10.1016/j.nima.2021.165018

A kumulatív energia súlyozott összeg

A Kumulatív energia súlyozott összeg alkalmazása a ¹⁹⁷Au(n,γ)¹⁹⁸Au detektor átviteli függvénnyel korrigált (unfolded) spektrumra

5. Módszer $\sigma_{\gamma,i} = \sum_{m=1}^{i} \frac{E_m \sigma_{\gamma,m}}{B_n}$; B_n a neutron kötési energiája

Összefoglalás:

A BNC mérései jelentősen hozzájárultak a meglévő termikus neutron befogási hatáskeresztmetszet adatbázishoz

Szükség van az meglévő adatok újbóli áttekintésére és annak meghatározására, hogy hol van szükség további mérésekre, illetve az adatok validálására

Sikeres részvétel az IAEA NAA roundrobin mérésekben, igazolja a k0 módszer helyességét

Tervek:

- További (n,γ) spektrumok visszabontásával teljes befogási hatáskeresztmetszetek kiszámítása
 - ^{73,74}Ge, ²³³Th, ²⁴³Pu...
- ¹⁴N(n, γ)¹⁵N parciális hatáskeresztmetszeteinek tesztelése a nagy energiás hatásfok meghatározásához
- (n, γ) spektrumok szimulációja extrém statisztikus modellel
- Parciális hatáskeresztmetszet adatbázis felújítása PGAA analízishez Révay Zsolt és Maróti Boglárka méréseivel és értékelésével

Köszönöm a figyelmet!

