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General Relativity as a low energy theory

It is generally understood that GR is a low energy effective theory of gravity.

Low energy means low space-time curvature (also large distance): there must
be a scale `? ∼ Λ−1

? at which higher-derivative terms arise.

A single combination at every order leads to second order Euler-Lagrange
equations [Lovelock, 1971]

I =

∫
dDx
√
−g

[
R − 2Λ +

λ

Λ2
?

(
RµνσλRµνσλ − 4RµνRµν + R2)+ · · ·

]
.

However, the quadratic term is non-trivial if and only if D ≥ 5 and, in general,
the k -th order term is physical for D ≥ 2k + 1.

In this talk I would like to go beyond GR and discuss its higher-curvature
corrections without departing from 3 + 1 spacetime dimensionality.

José D. Edelstein (IGFAE–USC) Beyond GR: causality, cosmology and astrophysics 16-september-2024 2 / 32



Outlook

I will explore three aspects of higher curvature gravities:

CAUSALITY
I will suggest that causal higher curvature gravities are stringy.

COSMOLOGY
Higher curvature terms lead to geometric inflation.

ASTROPHYSICS
Higher curvature terms magnify the black holes accretion rate.
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Beyond General Relativity: causality issues

Not all local Lorentz invariant Lagrangians are consistent.

For a U(1) gauge field, e.g., [Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi, 2006]

I =

∫
d4x
√
−G

[
−1

4
FµνFµν +

c1

Λ4
?

(FµνFµν)2 +
c2

Λ4
?

(Fµν F̃µν)2 + · · ·
]
,

the coefficients c1 and c2, a priori unconstrained, give the leading S-matrix
amplitudes at energies beneath Λ?.

To avoid analiticity and unitarity problems of the S-matrix, and superluminal
modes, they must be possitive.

They are indeed positive if obtained by integrating out electrons in QED.
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Beyond General Relativity: causality issues

In the case of gravity, the situation is tighter. If we have

I =

∫
dDx
√
−g

[
R +

c1

Λ2
?

RµνσλRµνσλ +
c2

Λ4
?

RµνσλRσλαβRαβµν + · · ·
]
,

then c1, c2 ' 0 or, else, an infinite tower of massive higher-spin particles must
be introduced. [Camanho, Edelstein, Maldacena, Zhiboedov, 2014]

The setup we are dealing with is represented as follows:
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Beyond General Relativity: causality issues

The idea is to compute the tree-level 4-point amplitude in the Eikonal limit:
s ' PuPv very large, t ' −~q2 � s, and fixed impact parameter ~b.

The eikonal phase shift, in the impact parameter representation, is given by

δ(s, ~b) =
1
2s

∫
dD−2~q

(2π)D−2 ei~b·~qA[4]
tree(s, t)

=
1
2s
A[3]

13I(−i∂~b)A[3]
I24(−i∂~b)

∫
dD−2~q

(2π)D−2
ei~b·~q

~q2 .
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Beyond General Relativity: causality issues

The vertices A[3]
13I := A[3]

13I(−i∂~b) and A[3]
I24 := A[3]

I24(−i∂~b) read:

A[3]
13I = 2P2

u

[
(~e1 · ~e3)2 +

c1

Λ2
?

(~e1 · ~e3)(~e1 · ∂~b)(~e3 · ∂~b) +
c2

Λ4
?

(~e1 · ∂~b)2(~e3 · ∂~b)2
]

A[3]
I24 = 2P2

v

[
(~e2 · ~e4)2 +

c1

Λ2
?

(~e2 · ~e4)(~e2 · ∂~b)(~e4 · ∂~b) +
c2

Λ4
?

(~e2 · ∂~b)2(~e4 · ∂~b)2
]

Then, the eikonal phase shift scales linearly, δ(s, ~b) ∼ s.

The S-matrix reads
S(s, ~b) ' eiδ(s,~b) ,

and it has to be analytic and bounded,

|S(s, ~b)| ≤ 1 , for Im s ≥ 0 ;

a sign flip in δ(s, ~b) is not physically admissible.
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Beyond General Relativity: causality issues

It is impossible to fulfill this condition for all polarizations of the intervening
on-shell gravitons. [Camanho, Edelstein, Maldacena, Zhiboedov, 2014]

In fact, δ(s, ~b) is proportional to the Shapiro delay, which relates this problem
to causality violation.

We need to invoke new degrees of freedom at E ∼ Λ?

• spin J particles contribute as δ(s, ~b) ∼ sJ−1.

Massive J = 2 would do the job but . . .

• they do not conserve angular momentum!

We need an infinite tower of higher-spin particles with a delicate fine-tuning in
their couplings, as in string theory! [D’Appolonio, Di Vecchia, Russo, Veneziano, 2015]
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Beyond General Relativity: causality issues

What happens in 3D? Spacetime is locally flat outside the locus of a source;
there should be no Shapiro delay.

Topologically Massive Gravity [Deser, Jackiw, Templeton, 1982] instead

ITMG =

∫
d3x

[
σ
√
−gR +

1
2µ
εµνρΓσµα

(
∂νΓαρσ +

2
3

ΓανλΓλρσ

)
+

1
2
√
−g ∂µφ∂µφ

]
has a single massive spin-2 graviton mode with mg = µ > 0, whose kinetic
term is well defined for σ = −1.

Both a scalar particle and the massive graviton crossing a shock wave would
experience a Shapiro delay [Edelstein, Giribet, Gómez, Kilicarslan, Leoni, Tekin, 2017]

∆v = −2σ|p|
µ

e−µb > 0 and ∆v = −3σ|p|
mg

e−mgb > 0 .

Unitarity and causality demand negativity of the Newton constant.
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Beyond General Relativity: causality issues

Higher curvature gravities have more solutions than perturbative deformations
of GR. For instance, [Edelstein, Ghosh, Laddha, Sarkar, 2021 & to appear]

L =
1

16πG
(
R + αR2 + βRµνRµν

)
,

with β ≤ 0 and 3α + β ≥ 0. For instance

ds2 = −du dv + h0(u, xi ) du2 +
D−2∑

i

(dxi )
2 ,

with h0(u, xi ) = f (r) δ(u), and [Campanelli, Lousto, 1996]

f (r) = −
8πG |Pu | Γ

(
D
2 − 1

)
π

D
2−1

 (−2β)2− D
2

Γ
(

D
2 − 1

) ( r
√
−β

)2− D
2

K2− D
2

(
r
√
−β

)
−

1
D − 4

(
1
r

)D−4
 ,

Kn(x) is the modified Bessel function of the second kind. The Shapiro delay:

∆v = (∆v)GR ×
(

1− 1
2n−1Γ(n)

xnK−n(x)

)
> 0 .
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Beyond General Relativity: geometric inflation

Let us proceed as follows: we would like to write down an action of the form

I =

∫
d4x
√
−g

(
R − 2Λ +

∞∑
n=2

λn `
2n−2
? R(n)

)
,

where R(n) are polynomials in the Riemann curvature of order n and L? ∼ Λ−1
?

sets the scale at which they become relevant.

The theory has a number of maximally symmetric vacua, depending upon the
numerical coefficients λn. One of them is connected to the GR vacuum.

If we expand around a vacuum, we find three degrees of freedom: a massless
graviton, a ghosty massive graviton and a scalar field.

We can kill the unwanted modes by switching their mass to infinity. This gives
algebraic constraints on the R(n) densities.
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Beyond General Relativity: geometric inflation

We will impose the following constraints on the densities R(n):

(i) right spectrum of massless gravitons in vacuum,

(ii) well-behaved black hole solutions, and

(iii) well-posed initial value problem for cosmology.

For instance, at quadratic level, there is a unique solution,

R(2) = RµνσλRµνσλ − 4RµνRµν + R2 .

At the cubic level, there is a unique combination R(3) := P − 8 C [Arciniega, Edelstein, Jaime,

2018], where P [Bueno, Cano, 2016] and C [Hennigar, Kubizňák, Mann, 2017] read:

P = 12R σ λ
µ ν R α β

σ λ R µ ν
α β + R σλ

µν R αβ
σλ R µν

αβ − 12RµνσλRµσRνλ + 8R ν
µ R σ

ν R µ
σ ,

C = RµνσλRµνσ
αRλα − 1

4
RµνσλRµνσλR − 2RµνσλRµσRνλ +

1
2

RµνRµνR .
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Beyond General Relativity: geometric inflation

Let us then consider the action

I =

∫
d4x

√
−g

(
R − 2Λ +

∞∑
n=3

λn L2n−2
? R(n)

)
,

and a FLRW spacetime ansatz

ds2 = −dt2 + a(t)2
(

dr 2 + r 2dΩ2
)

;

the equations of motion for a(t) are second order. It is suitable to trade t by N,

d
dt

= H
d

dN
, where H :=

ȧ
a
,

since a = ainit eN . The set of Friedmann equations read:

3F (H) =
1

M2
Pl
ρ , −H ′ F ′(H) =

1
M2

Pl
(ρ+ P) ,

and ρ′ + 3(ρ+ P) = 0, where

F (H) := H2 + L−2
?

∞∑
n=3

(−1)nλn (L?H)2n .
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Beyond General Relativity: geometric inflation

It was recently shown that the cosmology of a T-dual invariant theory is driven by such
function! [Hohm, Zwiebach, 2019]

Albeit in the string frame the coefficients {λn} must be computed, in the Einstein frame
F (H) satisfies a second order non-linear differential equation [Krishnan, 2019].

Cosmology is entirely dictated by F (H) —as in Lovelock’s black holes [Camanho, Edelstein,

2011] and cosmology [Camanho, 2015]—; that is,

L−1
? & {λn}

Ambiguities in the definition of R(n) densities: RA
(n) and RB

(n) differing by T AB
(n) make no

contribution to the field equations for the classes of metrics considered here!

This is tantamount to an ambiguity in the {λn}.

Reasonable constraints on F (H) include positive-mass black holes [Bueno, Cano, 2017],
and absence of local extrema (which would lead to singularities).
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Beyond General Relativity: geometric inflation

If we truncate to cubic order, the action

I =

∫
d4x

√
−g
(

R − 2Λ + λ3 L4
?R(3)

)
+ Iradiation ,

is unique, and leads to accelerated expansion [Arciniega, Edelstein, Jaime, 2018].

By the way, this theory also has interesting holographic applications such as in the
computation of 3d CFTs on squashed spheres [Bueno, Cano, Hennigar, Mann, 2018]:

FS3
ε

= FS3
0
− π4CT

6
ε2
[
1− t4

630
ε+O(ε2)

]
,

where CT and t4 are given by two- and three-point functions of Tµν .

If we truncate at nmax, the limit a→ 0 implies acceleration at early times,

ε ≡ − Ḣ
H2 = 1− ä

aH2 ∼
2

nmax
.

the expansion being polynomial rather than exponential.
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Beyond General Relativity: geometric inflation

We shall not truncate the series. The full tower of higher-curvature terms becomes
relevant before reaching the singularity.

The scale factor will grow faster than any polynomial near a = 0.

Features are quite model-independent [Arciniega, Bueno, Cano, Edelstein, Hennigar, Jaime, 2018].
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This exponential growth gracefully connects at late times with Einstein gravity, as long
as the new energy scale, L−1

? , is high enough.
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Beyond General Relativity: geometric inflation

The details depend on the choice of parameters {λn} and energy scale L−1
? , but the

general message is: an inflationary epoch seems unavoidable.

If ε = 0, H = H0 is a root of F (H) and the expansion is pure de Sitter. The cubic theory
is unstable [Pookkillath, De Felice, Starobinsky, 2020] [Beltrán Jiménez, Jiménez-Cano, 2021].

Naively it seems that the inflaton field is unnecessary [Arciniega, Bueno, Cano, Edelstein,

Hennigar, Jaime, 2019]. Let us revisit this issue. The first Friedmann equation reads

3H2 (1 + G(H)) =
1

M2
Pl
ρ , so that G(H) :=

F (H)

H2 − 1 .

and accelerated expansion arises when G(H)� 1. Late time connection to GR needs
G(H → 0)→ 0. There are two stages: [Edelstein, Vázquez Rodríguez, Vilar López, 2020]

G(H)� 1, a higher-curvature era at which accelerated expansion happens,

G(H)� 1, a GR-ish late time universe.

Let us define Hend as the value of the Hubble parameter for which G(Hend) = 1.
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Beyond General Relativity: geometric inflation

The energy density at the end of inflation is ρend ∼ M2
PlH

2
end. Assuming ρ ∼ a−3(1+w), if

we allow for N e-folds,

ρinit ∼ ρende3(1+w)N ∼ M2
PlH

2
ende

3(1+w)N .

Demanding ρinit < M4
Pl,

Hend < e−
3
2 (1+w)N MPl .

But Hend sets the scale of corrections to GR. Astrophysical tests imply [Hennigar, Poshteh,

Mann, 2018], L? . 108m. Thereby Hend & 10−43MPl, since |λ3| ∼ O(1).

For radiation and N = 60, we obtain Hend < 7.7× 10−53MPl to avoid super-Planckian
energy densities at the beginning of inflation! This is ruled out!

The exponential expansion is so extreme that it needs tiny energy densities at the end
of inflation. This in turn means that corrections to GR have to be relevant up until these
tiny energy densities, but this conflicts with observational constraints.

An obvious way out: inflation driven by something which does not dilute so fast!
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Beyond General Relativity: geometric inflation

A scalar field in a slow-roll regime has w ≈ −1: its energy density does not dilute at all!

Iscalar =

∫
d4x
√
−g
[
−1

2
(∇φ)2 − 1

2
m2φ2

]
.

This matter sector contributes to the generalized Friedmann equations with

ρ =
1
2

H2φ′2 +
1
2

m2φ2 , P =
1
2

H2φ′2 − 1
2

m2φ2 ,

and the energy-momentum conservation. Let us first explore

I =
M2

Pl

2

∫
d4x

√
−g
(

R − β L4
?R(3)

)
+ Iscalar ,

whose Friedmann equation reads:

3H2
(

1 + βH4
)

=
1
2

H2φ′
2

+
1
2

m2φ2 .

H and m are given in units of L−1
? , while φ is in Planck units. It is easy to check that the

cubic theory is less efficient as an inflationary theory.
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Beyond General Relativity: geometric inflation

This is shown by the evolution of the scalar field (we take φ̃ = 15MPl, m = 0.1L−1
? )

GR
β=10

β=100

0 10 20 30 40 50

2.5

5.0

7.5

10.0

12.5

15.0

N

ϕ
/M

P
l

Let us quickly explore two possibilities:

Including radiation. This will lead to a hybrid scenario where ordinary inflation
follows a sort of bandoneon-like geometric inflation.

Pushing the inflationary regime to higher energies, Λinf � L−1
? . This leads us to a

remarkable small free field inflation scenario.
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Beyond General Relativity: geometric inflation

If we bring in radiation into the picture,

3H2
(

1 + βH4
)

= ρ̃ e−4N +
1
2

H2φ′
2

+
1
2

m2φ2 ,

where ρ̃ = ξ2M−4
Pl ρinit and ξ = L?MPl.

Consider a period of expansion where radiation dominates the right-hand side and the
cubic term the left-hand side.

This regime stops either when the GR term equals the cubic one (N = NGR for which
H(NGR) = Hend), or when the scalar field energy density becomes dominant (N = Ns

such that, in a slow-roll regime, 1
2 m2φ(Ns)

2 = ρ̃ e−4Ns ), whatever comes first.

The full (mostly analytic) investigation of all the relevant regimes for the cubic and
quartic theories was performed in [Edelstein, Vázquez Rodríguez, Vilar López, 2020].

I will present them just by showing you a plot.
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Beyond General Relativity: geometric inflation
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The super-Planckian problem of the initial energy density is marginally solved.

The scalar field stays pretty much constant while Geometric inflation is active! Its
value can be reduced, but φ̃ ≥

√
2MPl.

Ordinary inflation is the last stage at the end of the bandoneon-like cascade: it
smoothly connects with a reheating era.
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Beyond General Relativity: geometric inflation

Let us come back to an F (H) theory coupled to a scalar field. Calling Kφ and Vφ the
kinetic and potential energies, the ε-parameter is:

ε =
6F (H)

HF ′(H)

Kφ
Kφ + Vφ

.

A fast-growing F (H) will produce accelerated expansion.

But we need to connect with GR. This is at the root of the constraint φ̃ ≥
√

2MPl, which
is behind the higher-curvature terms upsetting inflation in the absence or radiation!

We can solve both problems by pulling apart Λinf � L−1
? [Edelstein, Mann, Vázquez Rodríguez,

Vilar López, 2020].

Again, I will skip the details of all relevant regimes and present them just by showing
some plots.

We can identify the relevant features of F (H) to entail a proper inflationary model.
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Beyond General Relativity: geometric inflation

Let us summarize the relevant features of F (H):

For small H, F (H) ∼ H2 +O(H6). We cannot have an H4 term in four dimensions
for GQTG gravity [Hennigar, Kubizňák, Mann, 2017].

We require an almost flat region of F (H), whose only purpose is to separate the
inflating part of the function from the GR one.

Finally, we require a region in which F (H) grows fast, and where inflation will be
produced.

We will present a Gaussian model implementing these features.
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Beyond General Relativity: geometric inflation

The center of the Gaussian is located at Λinf =
√

ΓΛ?; Γ� 1 (Γ = 108) guarantees we
are separating the inflationary regime from the GR one.

F (H) = H2
[

1
2 + (L?H)2 +

1
4

(
1− 1

Γc2
σ

)
(L?H)2

1 + (L?H)4

][
1 + e

1
2c2
σ e
− ((L?H)2−Γ)2

2Γ2c2
σ

]
.

cσ determines the relative width of the Gaussian; we set cσ . 1 (cσ = 0.7).
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Beyond General Relativity: geometric inflation

We choose m = 500 L−1
? and an initial value φ̃ = 0.01 MPl. We can see that the large

scale separation, Λinf � Λ? does the job!

We obtain N = 84 e-folds of inflation before the system enters the flat part of F (H),
where we get quick dissipation and eventually connection with the GR regime.

0 20 40 60 80
0

0.002
0.004
0.006
0.008
0.010

N

ϕ/
M
P
l

0
0.2
0.4
0.6
0.8
1.0

ϵ

80 81 82 83 84
0

0.002
0.004
0.006
0.008
0.010

N

ϕ/
M
Pl

0
0.2
0.4
0.6
0.8
1.0

ϵ

All of the accelerating expansion happens in the fast-growing part of F (H), with an
almost de Sitter expansion (ε ≈ 0).
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Beyond General Relativity: black hole accretion

Let us investigate the effects of strong gravity on the surrounding matter. Nowhere else
is this interplay more dramatic than in an accretion scenario.

In wind accretion, a massive gravitational object accrets as it moves through a gas
cloud at supersonic speeds [Hoyle, Lyttleton, 1939] [Bondi, Hoyle, 1944].

When the relative motion between the gas cloud and the accretor can be neglected,
we talk about spherical accretion [Bondi, 1952].

We want to explore the higher curvature corrections to these in the context of

Primordial black hole accretion (and abundance).

Supernovae triggered by PBHs.
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Beyond General Relativity: black hole accretion

Let us compute the fly-by radius for a cubic black hole of mass M, [Edelstein, Rivadulla

Sánchez, Rodríguez Moris, Tejeda, to appear]

I =

∫
d4x

√
−g
(

R + λ3 L4
?R(3)

)
.
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We use

ε = λ3
L4
?

M4 .

Let us now turn to the ballistic accretion: relativistic wind by a static black hole.
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Beyond General Relativity: black hole accretion

Infinitely far away the wind has a constant density ρ∞ and velocity v∞.

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

The material accreted is therefore inside the cylinder with radius bc . We can integrate
its flow to obtain the accretion rate,

ṀHL = πb2
c ρ∞v∞γ∞ .

Let us show the accretion rate normalized by Ṁ0 = 4πM2ρ∞ for different values of ε.
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Beyond General Relativity: black hole accretion
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More important for relatively large values of v∞, particularly for small ε.
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Primordial black holes traversing a carbon-oxygen white dwarf can trigger a detonation
which produces normal thermonuclear supernovae (SNe Ia) [Steigerwald, Tejeda, 2021].
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The cubic terms tend to increase the contrast in density and decrease the aperture
angle of the shock cone.
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