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Introduction

At HL-LHC: Statistical /systematic uncertainties ~ 1%
= Theory needs to keep up!

Q [GeV] | 66NLO | §(scale) | 6(PDF-TH)
g — Higgs my 3.5% fg%iz/‘; +1.2%
bb — Higgs | my -2.3% flﬁ;sg;/g +2.5%
+1.53%
NCDY 30 48% | Ty +2.8%
100 | -21% | TO8%e | 425%
+2.5%
CCOY(WH) 30 47% | +3.2%
150 | -2.0% | ‘33 +2.1%
_ 0 +2.6% 0
CCoY(W-) 30 5.0% e +3.2%
150 | -21% | ‘% +2.13%

Table: [Baglio et al., 2022]

1|oNNLO(NNLO PDF) — oNNLO(NLO PDF)|
O(PDF-TH) =3 oNNCO(NNLO PDF)
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PDF scale dependence

Scale evolution of PDFs is set by the DGLAP equation [cribov and Lipatov, 1972,

[Altarelli and Parisi, 1977], [Dokshitzer, 1977]
dfi(x, p?) Ldy X
S 2 :/ 7'Dlj(y)fj_ 77:“'2
dinp x Y y

with Pj; the QCD splitting functions. These are perturbative quantities
and can be computed as the anomalous dimensions of the leading-twist
operators that define the PDFs

dloj]
dinp?

FIO], 7 = a0 4 2500 4

1
A= —/0 dx x" P;(x)

We can distinguish 2 sets of leading-twist operators based on their
representation in the QCD flavour group.
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Leading-twist operators

@ Flavour non-singlet quark operator
OV i) = S [$A" 91 Dy - Dyt
@ Flavour singlet quark operator + gluon operator
O a(x) = 58 [ F,,, DR DIt Ft, |
O s ) = S [P D - D]
with

Dy =8, — igs T?A2
D7 = 0,6° + gsf*> A}

a a a abc pb pAc
F2, = 8,A2 — 9,A% + g fPC AL AS
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Renormalization of gauge invariant operators

To extract the anomalous dimensions of interest, we now need to
renormalize the operators. For this, one needs to take into account mixing
of operators in the same representation. This implies that

@ the non-singlet quark operators renormalize multiplicatively

0l = Zn[ONs]

@ the singlet quark and gluon operators mix under renormalization

N N
OE;S) B (Zﬁ/q Z,‘\’,g) [(’)( )]
OéN) Zﬁf’ Z/%/g [Og\/ ]

Note: Use the MS-scheme and D = 4 — 2¢ dimensional regularization.
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Renormalization of gauge invariant operators

2
as qq0)  as )1 0 0 ,(0) _gq,(0
Z,‘\’,q=1+;v,c\’,q( )+s{ [7/(\7/(]( )('Y/(Z/q()_BO)“"Y[c\’/g( )ﬁlq( )]

+,yqo/(l)} B
2

qg,(0)
as ) a "}/ )
Zﬁlg:67/c\’/g(0)+2z.{ NE (7% qq,(0 )JrvN —280) + qg(l)}ij

N

gq _ 9s_gq,(0) | 9s 'Vﬁq’( : q9,(0) ga,( (1)
ZN :;’)’N +£ - (7N + N 2/80)+’YN + ...

€

+'yig’(1)}...
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Renormalization of gauge invariant operators

Unfortunately, the mixing pattern of the operators is even more
complicated as alluded to above when computing off-shell matrix
elements. In particular, one needs to take into account mixing with

non-gauge-invariant (&) operators.

Aliens in QCD
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Aliens through history

@ The appearance of alien! operators in the renormalization of the
physical ones has been known since the early seventies
[Gross and Wilezek, 1974]. 1 hey obtained the physical anomalous dimensions
without accounting for aliens by using lightcone gauge.

@ The origin of the issue was provided by Dixon and Taylor
[Dixon and Taylor, 19741 IN particular, they showed that the bare Yang-Mills
Lagrangian is invariant under a different set of gauge transformations
as the renormalized one.
— Construction of the aliens relevant for the computation of the
1-loop anomalous dimensions

@ 2 years later, Joglekar and Lee worked out the general theory of the
renormalization of gauge invariant operators. Their main results are
summarized in 3 theorems poglekar and Lee, 1976]

1Term coined in '94 by [Collins and Scalise, 1094].
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Side-step: Joglekar-Lee theorems

1. The basis of alien operators A; that mix with the gauge invariant ones
can be chosen such that they are BRST exact

A; ~ 0grsTB;.

Here B; is called the ancestor of A;.
2. Physical matrix elements of the aliens vanish.

3. The mixing matrix is triangular

[O¢] Zec Zea Zee\ [Oc
[Oal | =| 0 Zaa Zae| | Oa
[OF] 0 0 ZEE Ok
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Aliens through history

@ The 2-loop anomalous dimensions were computed a few years later
Using d|ﬂ:erent gauges: [Floratos et al., 1979, Gonzalez-Arroyo and Lopez, 1980, Floratos et al., 1981]
used the covariant gauge while [Furmanski and Petronzio, 1980] Used the axial
gauge

@ The computations using covariant gauge agreed with one another but
disagreed with the axial gauge one

@ The issue was solved a decade later by Hamberg and van Neerven in
faVoUr Of the axial gauge reSU|t [Hamberg and van Neerven, 1992]

@ Unfortunately, the way forward was not clear; the generalization of the
basis of aliens to higher orders in perturbation theory was unknown.

@ Nevertheless, the 3-loop anomalous dimensions were computed using
different methods vogt et al., 2004]
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Aliens through history

o Finally, after 30 years, significant progress was made in the alien issue
by 2 independent groups

@ G. Falcioni and F. Herzog were able to derive constraints to
consistently derive the aliens at fixed orders which were solved for
leed N S 20 [Falcioni and Herzog, 2022]

— All 4-loop splitting functions now known to N = 20 [Falcioni et al., 2023b,
Falcioni et al., 2023a, Gehrmann et al., 2024a, Falcioni et al., 2024d, Falcioni et al., 2024b, Falcioni et al., 2024a]

@ On the other hand, (Gehrmann et a1, 2023) developed a method to derive the
counterterm Feynman rules for the aliens
— n% contributions to the pure-singlet splitting functions at 4

|OOpS [Gehrmann et al., 2024a]

Focus on method by Giulio and Franz in what's next
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Construction of the alien operators

The complete gauge-fixed QCD action is written as

S= /dDX (,Co +£GF+G) .

Here Ly represents the classical part of the QCD Lagrangian

1., LA
Lo=—3 FFa,+ D 0 (i — me)y',
f=1
with

£GF+G = ——(8“A"")2 c? 8"D;jb Cb
and
a a a abc pb pc
Fiv = 0uA) — 0L A + gsF 7 ALA,
Dy, =8, — igs T°A2
D7 = 0,6° + gsf** AP

fabc are the standard QCD structure constants.
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Construction of the alien operators

The QCD Lagrangian can be extended to also include the leading-twist
spin-N gauge-invariant operators, which we define as

1
O (x) = S Fu(x) DN 2F¥ (),

N — _
08" (x) = B ()& DY Mi(x).
Here A, is a lightlike vector and we introduced the notation
FHa = A, FH2, A =N AR D=A,D", 0=A7,0".

These physical operators now mix under renormalization with aliens, which
are (a) proportional to the field EOMs and (b) contain ¥ . Schematically
the complete Lagrangian is then

L= Lo+ Lerrc +w O + O(EI\OI)M + OEN)
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Construction of the alien operators

The most general form of the EOM operator is [raicioni and Herzog, 2022]
O = (D - F? + g b T2 Ay) G(A, 0A%, 0%A%, ...)
with G? a generic local function of the gauge field and its derivatives.

Expanding G? in a series of contributions with an increasing number of
gauge fields then leads to

N N),I N N), Il N), IV
OI(EO)M = OI(EO)M +O( )M JrO(EO)M JrO(EO)M
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Construction of the alien operators

oWl _ n(N) (D'Fa-l-gs@A Ta¢) (6N72Aa)’

EOM
O — g (D-F*+ g b AT) 3 CP(IAY) (P A°),
i+j

=N-3
Oton' =& (D F*+g0AT?w) 3 CRe(0'A) I A)(0"A7),
Ptk
—N-—4
OI(E,(\g)hhlv = gs (D CF2 4 gSJATalp) Z jfcde(alAb)(ajAc)(akAd)(a A°).
i_tj[;[i_k:rt_l
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Construction of the alien operators

The coefficients C,f:{'_',l:jl appearing can be written in terms of a set of
independent colour tensors, each of them multiplying an associated
coupling constant, as follows

Cﬁbc — fabc

Ii',,j,
abcd abcd ( ) abcd (2) abcd (3)
Cuk =(ff) Fijk +d Fijk d4ff Fiji »
abcde __ abcde 1) abcde (2)
Cir = (fff) Ukl+ daf " K
To avoid overcounting: k-couplings inherit properties of the colour
structures they multiply, e.g. xj = —xj;

The standard gauge transformations leave Ly and O; invariant, but not
(V)
Okom

= generalized gauge transformation
a a a A pa
Al — AL+ WAL+ 0, AL
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Construction of the alien operators

A
A; — AZ + 5wA; + 95 AZ
a ab, b
SuA;, = DiPw(x),

6QAJAZ, _ _All« T](N) aN—lwa_i_gs Z Eijahaz ( Aal) (aj+1 az)
AT
+g5 Z Caalaga3 Aal) (aJAaz) (ak+1wa3)
L+I\JI+/1(1

+g3 Z C;ill222324 (aiAal) (ajAaz) (8kAa3) (3I+1wa4) +(9(g_f)

itk
=N—5
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Construction of the alien operators

~ab b
Cg c_ fa CT/U’

bed bed, (1) bd(2) bed (3)
likc (f F)>* Mij + g Mijk djffc Mijk >

Cabcde _ (f f f-)abcde (1) dabcde (2a) daebcd (2b)

ijkl Mijt + Mt 9ar M-
The generalized gauge symmetry implies that the couplings 775,1) n; are

(K)

related to Kny...n;
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Construction of the alien operators

i+j+1>
i )

1 Jtk+1 1 1
nl(Jk) — 2’£i(j+k+1)< . ) + 2[/<;§jk) + Hgg'i)]’
2 2
nl(Jk) = 3Hgk)7

nl(ﬁ( - 2[/‘%2?;() - K’kﬂ)]

1 1 1 I+ k+1 1 1 1
77,(Jk)/ = 2[“2 )I+k+1) + “E/J)rkﬂ)ji]( B ) 2k fjk)/ flkj + “5:/3 + ”5;«3]
(2a) _ , (2) k+1+1 )
M = 3Kkt i+1) < K + 2K

(2b) _ 5 (2)
Niki = 2K jjjkc
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Construction of the alien operators

The generalized gauge transformation can now be promoted to a
generalized BRST (gBRST) transformation

A
Al = AL+ AL+ DAY

The ghost operator is now generated by the action of gBRST on a suitable
ancestor Opel’ator [Falcioni and Herzog, 2022], gIVIng

OEN) _ OgN),/+O£N),// +O£N),III+O£N),IV 4o
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Construction of the alien operators

O = —n(N)(9e) ("),

O — g S Cahe(9e7)(9AP) (910,

i+j
=N-3

O‘(:N),/// 2 Z Castu 8C (a AS)(ajAt)(ak+1 u)

i+j+k
=N-4

OEN),IV _ Z 5lt(nlcde alAb)(ajAC)(akAd)(al—i-l e)'

I+J+k+/
=N-5
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Renormalization

The complete Lagrangian is now

L= Lo+ Lerarg +w O + O( O)M + OSN)

= EO(AfL?gS) + £GF+G(Ap,7 C 7C y 8s) g) + Z Ck Ok7
k

where Ci labels aII the distinct couplings of the operators,

Cx = {w,n(N), /i,,l nj,nﬁ,’f) n;}- The UV singularities associated with the
QCD Lagrangian are absorbed by introducing the bare fields/parameters

Aa;bare _ \/ZAa X)
& bare fc
ol bare fc

bare

8 = = p g8s
ébare _ \/736
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Renormalization

This is not enough to make the OMEs finite. Instead they need an
additional renormalization

Of"(x) = Z; Op**(x),
The renormalized Lagrangian becomes

~ a;bare _bare a;bare _a;bare —a;bare _bare #bare
L= Lo(A7", 857C) + Lar+ (ALY, 7P, TP, g€, £7°°)
+ § :Cll()are (Qllzare7

K
ch Zyi,
k

where Cy is the (finite) renormalized coupling of the operator Ok. The

UV-finite OMEs featuring a single insertion of O are computed by
setting the renormalized couplings C; = §;

Cibare

g/q which gives

bare
Ci — Zg/q i-
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Renormalization

= The couplings of the bare operators 7°2¢(N), ... are interpreted as the
renormalization constants that mix the physical operators into the aliens

— Extracted from the direct calculation of the singularities of the OMEs,
e.g.

bare _ _ & Ca 2
n (N)_ch_ € N(N_1)+O(as)

We note that this quantity is known to O(a2)
[Dixon and Taylor, 1974, Hamberg and van Neerven, 1992, Gehrmann et al., 2023]
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Analytic reconstructions based on fixed moments

In [Falcioni and Herzog, 2022, Falcioni et al., 2024b], thls Setup was Used for ﬂxed N S 20 The
3)

available moments can be used to try and constrain an Ansatz for Vij

e Denominators of the form ﬁ (a > 0)
o Harmonic sums Sim m,, ...my(N) = S04 (£1) i ™™ Spy - my (i)

Ansatz large: 2 - 3% = 1458 weight-7 S-sums

= Difficult for generic colour structures, simplifications for terms ~ nZ or
containing (x

More details can be found in HP2 talk by G. Falcioni
https://agenda.infn.it/event/35067/contributions/233420/

Can the method of Falcioni and Herzog be generalized to arbitrary N7?
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|dentities between alien couplings

@ The x couplings in the EOM operators are chosen to inherit the
properties of the colour structures they multiply, e.g. xjj = —kj;

@ Because of gBRST, the i couplings are connected to the x ones.

@ An equivalent approach to generate the ghost operators would be to
start from anti-gBRST, for which w?(x) in the generalized gauge
transformation should be replaced by the anti-ghost field €2(x)

a a a A pa
A2 = A2 4 5 A2 4 SBA2

— the functional form of the resulting operators is different from
those derived from gBRST
= non-trivial identities for the n-couplings!

@ These identities allow one to restrict the function space of the
couplings and hence constrain their generic N-dependence.

@ During this talk: Focus on couplings coming with a string of f's
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Class Il couplings

O — g (D-F? + g AT) £ 3 ky(9/AP) (D A),
i+j

=N=-3
O — g, 7 3 ()0 AN) ()
i+j
—N-3
Kij + Kji = 0, [anti-symmetry of f]
i
=2+, [6BRST]
nij +Z 1)+ ( , >n(;_s)(j+s) =0 [anti-gBRST]
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Class Il couplings

Note that the anti-gBRST relation is an example of a conjugation relation,
in the sense that a second application of the sum leads to

i St i Sty =t 2y
S ( ; Vati-aura = = 30 () S ) Erm——
t=0

=0 J /o jtt

and hence

i ~N -t .
t+ sf(s+J+t
nij = E ( ) > E (-1) ( i+t )"7(i—t—s)(j+t+5)'

t=0 J s=0

@ Already encountered in the computation of the anomalous dimensions
of leading-twist operators in non-forward kinematics, see

eg [Moch and Van Thurenhout, 2021, Van Thurenhout, 2024]
@ Great predictive power!

@ Valuable information about the function space
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Solving conjugation relations

@ To take full advantage of the anti-gBRST conjugation relations, one
needs to be able to evaluate them analytically

@ Use principles of symbolic summation: Telescoping and Gosper's
algorithm!
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Classical telescoping and Gosper's algorithm

The telescoping algorithm is a well-known method for evaluating finite
sums. Suppose we want to evaluate the following sum

N
> f(k)
k=a
with a, N € N and a < N. Now, if we can find a function g(/N) such that
f(k) = Dg(k) = g(k+1) — g(k)
then
N N
> f(k Zg k+1)=> g(k)
k=a = k=a

=g(’V+1) g(a).

Here, A represents the finite difference operator. The telescoping function
g(N) can be found by application of Gosper's algorithm [cosper, 1075).
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Classical telescoping and Gosper's algorithm

Assume we want to calculate the telescoping function for some sequence

{an}
ay = Ab(N).
It is assumed that {ay} is a hypergeometric sequence, that is
aN+1
N+ q(N)
aN

with g(N) a rational function of N. The steps of Gosper's algorithm can
then be summarized as follows

Sam Van Thurenhout Aliens in QCD 31 /52



Classical telescoping and Gosper's algorithm

@ Determine three functions f(x), g(x) and h(x) such that

_ f(x+1) g(x)
W)= "F0 hx+ 1)

and
ged[g(x), h(x +n)] =1 (n € Np).
@ Solve the so-called Gosper equation,
f(x) = g(x)y(x +1) = h(x)y(x),
for the polynomial y(x).
© If such a polynomial solution does not exist, it means that the sum in

question does not have a hypergeometric closed form. Otherwise, the
telescoping function is determined by

h
(00 = "0 with b(N) = t(N)a(N)
f(x)
More deta||s can e.g. be found in [Kauers and Paule, 2011]
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Classical telescoping and Gosper's algorithm

Example: S(N, m) = Zﬁ:o(_l)k(r)

aky1  k—m X—m

a k+1 = q(x) = x+1

@ Choose f(x) =1, g(x) = x — m and h(x) = x

_ f(x+1) g(x)
90)="F00 hixt D)

1=(x—m)y(x+1)—xy(x)
Solve with Ansatz: y(x) =a+ bx = y(x) =—-1/m
o
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Creative telescoping

Generalization to definite summation problems: creative telescoping
algorithm by Zeilberger (zeiberer, 1001). The idea is similar to that of classical
telescoping. Suppose we want to evaluate

N
> F(N, k) = S(N)
k=a

with f(N, k) hypergeometric in both N and k. The way to go about this is
by attempting to find d functions cp(N), ..., cg(N) and a function g(N, k)
such that

g(N,k+1)—g(N, k) =co(N)F(N, k) + ... + cg(N)F(N + d, k).
Summing both sides, and applying classical telescoping to the left-hand
side then gives

N N
g(N,N +1) — g(N,a) = co(N) Y F(N, k) + .. + ca(N) > (N +d, k).
k=a k=a
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Creative telescoping

This leads to an inhomogeneous recursion relation for the original sum of
the form

a(N) = co(N)S(N) + ... + ca(N)S(N + d).

The creative telescoping algorithm can be applied when the sequence
under consideration is holonomic. A sequence {ay} is said to be
holonomic if there exist polynomials po(x),. .., pr(x) such that the
following recursion relation is obeyed [Kkauers and Paule, 2011]

po(N)any + pr(N)ani1 + -+ -+ pr(N)anir =0 (N € N, p(N) # 0).

For example, the harmonic numbers {S1(/N)} form a holonomic sequence
as they obey

(N+1)Si(N) — (2N +3)Si(N+ 1) + (N +2)S; (N +2) =0.

More details on the summation algorithms reviewed here can e.g. be found
in the excellent books [Graham et al, 1989, Petkoviek et al., 1996].
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Solving conjugation relatio

— FOF S|ng|e sums: Slgma [Schneider, 2004, Schneider, 2007]
@ Sigma generates and solves recurrence for given summation problem

@ Solution consists of solution set for homogeneous recurrence +
particular solution

@ For final closed expression of summation: Determine linear
combination of solutions that has same initial values as the given sum

— For multiple sums: EvaluateMultiSums [schneider, 2013, Schneider, 2014]
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Class Il couplings

Kij+ Kji =0, [anti-symmetry of f]

i+j+1
nij=2f<&ij+n(N)< J ) [BRST]

i
nij + Z 1)* ( , >77(is)(j+s) =0 [anti-gBRST]

Combining anti-symmetry with gBRST we have

i+j+1 i+j+1
() (5

which gives an idea about the function space of 7.

nij + nji = n(N)
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Class Il couplings

Using the RHS of the previous equation as an Ansatz for 7;; gives

U+Z S*J( , >77(i5)(j+s):C177(N) [(_1)j+<iﬂ;'+l>]

for even values of N. Hence, we find a consistent solution if ¢; = 0 while
¢ remains unconstrained. Assuming that xj; lives in the same function
space as 7;;, the full set of relations fixes both couplings uniquely

nj = n(N)<N 2>,

J

)=
Kij = —5— o) - .
2 J i
Check: Compare with some fixed-N computations
— Correct for N =4 w
v d

— Incorrect for N > 4 w
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Class Il couplings

ny+ Z s+_/( _ >Tl(i—s)(j+s) = c1n(N) [(_1)1' + </+j_+ 1>]

)

The RHS however suggests the inclusion of a new structure: (—1)/. With

nj = n(N) [Cl(—l)j ta <i+J;'+ 1> e <i +§+ 1)]

we find
i s+ i+j+1 i
5+ L0 (T g = (et | () 4 -1y
s=0
and hence ¢ = —c.
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Class Il couplings

Assuming that xj; lives in the same function space as 7);;, the full set of
relations fixes both couplings up to 1 free parameter

e
/@,-j:n(N){C [<i+1;.+ 1) - <i+§+ 1>] _;(1+2c)(—1)f}

The unknown ¢ can be determined by the computation of 1 fixed-N matrix
element computation. E.g. for N = 6 we have k39 = 1/24 which sets
c=-3/8

= 0le-s(1:0)- ()

R Gt

The solution above exactly agrees with the known solution

Dixon and Taylor, 1974, Hamberg and van Neerven, 1992].
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Word of caution: Kernel functions

If an Ansatz is generated using (anti-)gBRST relations, one is in principle
free to add non-zero functions that live in the kernel of these relations. For
example, if one adds a term of the form

S (e (1)~ (')

the corresponding expression for 7);; still obeys the constraints. In
particular, substituting in the constraint coming from anti-symmetry and
gBRST one finds

[(=1)" + (=1Y] f(N) = 0.

The left-hand side of this expression always vanishes for all physical (even)
values of N, independent of the functional form of f(N). In general, the
exclusion of this type of function can only be confirmed by comparison
with fixed-N computations.
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Class Il couplings

Ofom = &2 (D~ F? + gap AT?9) (f £)2d 37 k007 AP) (@ A%) (9% A7),
i+j+k
=N—-4
O((:N),III _ 7gs2 (f f-)abcd Z 77’5'}()(afa)(aiAb)(ajAC)(ak+1Cd)
i+j+k
=N—-4
fﬁ() + "ffkj) =0, [anti-symmetry of f]
ﬁ) + "f(k,) + ’isaj) =0, [Jacobi identity]
+k+1
77,5-;() = 2Kj(j+k+1) (J i ) + 2+ KK ) 4+ H(kj,)] [gBRST]
(m +n+ k m+n+k (1) .
i Aijzgjzg ikt D™ G ey [anti-gBRST]
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Class Il couplings

The combination of the Jacobi identity with gBRST leads to

1 1 1 Jt+k+1 it+j+1
M+ k) + 1l = 2"”~i(j+k+1)< - > + 2’“‘3"("+f+1)< i
i+k+1
+ 26j(i+k+1) K :

. 1 .
— relates the class Il coupling nfjk) to the class Il coupling x5, at one
order lower in perturbation theory!

= use it to determine the function space of the all-N expression of 77,5-}()
— leads to 18-dimensional function space

{(_1),-+j(i+j+l>, (N—2)<i+j+1>,<N72><i+j+1)7(_1)j+k(j+k+1)7
i k+1 i K i j
G0 G0 e () GO0

N —2 i+k+1
( X ) < B ) + independent permutations of /, j and k ».
J
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Class Il couplings

We assume /<c( ) to live in the same function space. Hence in total we have
36 free parameters Using the relations described above we are able to fix

34 of these. The final 2 free parameters are then fixed using 5(11)0 =0 and
/-@(112)1 = 13/336, which follow from the explicit operator renormalization for

N =6 and N = 8 respectively. Our final result for nfjk) then becomes
[new!]

= (e (1)
+3(—1)yeL <f+’;+ 1) . (i+/;+ 1)
S0 G CRE G R
(e () (1))
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Class Il couplings

We have checked that the above expression agrees with explicitly
computed values, following from the renormalization of the operators, up
to N = 20. Substituting this expression into the gBRST relation allows
one to also reconstruct the full N-dependence of 77,5'? [new!]

@ _ nN) J o i (i1 ERVITYRE

+2(~1y Tk (j+l;+ 1) + <i+ /;+ 1) (-1)** +4<N_ 2)

j+1
O e (1) (1)

() e () o)
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Class IV couplings

Ofon" =g (D F°+ gpAT™) (f £ )% S ki)(0'A")(&A°) (D AT)(O'A%),

ikl
=N—5
N),IV _ 3 abcde 1)/ q=a iAb i AC k ad I+1 e
O — gl (£ Ay 3 o) (0 A (@A) (9 ATY (0 )
i+jrk+
=N-5
nfﬁ()l + nsz =0, [anti-symmetry]
E]i)/ + ”51113 + K/I(IJZ 0, [Jacobi]
f_/k)/ + KIJ(I}Z + K§i/)l + ’“Elj =0, [double Jacobi]
1 I+ k+1
"I(/kl = 2[Ku(/+k+1) + Elik+1)ﬂ]( P ) + 20k l/kl + K:(ij + ’“/,kj + Klku]’ [gBRST]
L& (st +s+s3+1)! s
Gt ts v s bnrs, ) N
i = SZO 2 Z alsismin Y M= s3)(—p)(i—s1)(s1+5+53+1) [anti-gBRST]
1=05,=0 53=0
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Class IV couplings

Combining the double Jacobi identity with the gBRST one allows one to
1 - (1 )

write 7, in terms of Ky appearing already in the class Il operators at
one order lower in perturbat|on theory!

W 0 @) 1) K+i+1 W RN
i i+ g+ kg = 2y + "‘(k+l+1)ﬁ]< K 205y + () I

20l 1yl +’j+ Y2t~ ().
Again this tells us something about the function space for n(k), Taking
into account all the independent permutations of the |nd|ces i,k,jand |
this space is now 264-dimensional. Assuming that the functional form of
f/k)/ is similar to the one of 7],5}()/ then implies that in total we now have
528 parameters to fix. However, after implementing all of the above

relations, only 8 remain in the end!
— Explicit expressions in [Faicioni et 2l 2024¢]
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Application: Alien Feynman rules

With the couplings known, one can derive the Feynman rules of the alien
operators

@ The Feynman rules for the gauge-invariant quark and gluon operators,
up to the four-loop level, can be found e.g. in [Falcioni and Herzog, 2022,
Gehrmann et al., 2023, Floratos et al., 1977, Floratos et al., 1979, Mertig and van Neerven, 1996,
Kumano and Miyama, 1997, Hayashigaki et al., 1997, Bierenbaum et al., 2009, Klein, 2009, Bliimlein, 2001,
Velizhanin, 2012, Velizhanin, 2020, Moch et al., 2017, Moch et al., 2022, Falcioni et al., 2023b, Falcioni et al., 2023a,
Falcioni et al., 2024d, Moch et al., 2024, Gehrmann et al., 2024b, Kniehl and Velizhanin, 2023] and
references therein. The generalization to arbitrary orders in
perturbation theory can be found in (somosyi and Van Thurenhout, 2024) 2

@ The alien rules were computed up to two loops in
[Hamberg and van Neerven, 1992],[Matiounine et al., 1998],[Bliimlein et al., 2022], and an eXtenSiOn to
the three-loop level was recently presented in [cenrmann et al, 2023]

2Note that the latter also presents the corresponding rules for the operators with
total derivatives, relevant for non-zero momentum flow through the operator vertex.
Sam Van Thurenhout Aliens in QCD 48 / 52



Application: Alien Feynman rules

«m A1

G ) ‘7~~,, (ZM P12 LG (o paaps pa) o P P i)
2NN Pl 1)1 e p Ve PLplcL § AN TN DLy P iy
@ 5
E S
3 Pty PLOLCL Pas P03 PrO.y P Taen
1+ (=) vy
e .
Gh234% (b1, b2, P3s P4, P5) = — FLX FXBY Y4
—8upDuBoBr D k(A pa) (B psY + BpAgAri(pr +2p) Ay
=N—3
1 i j Kk, 12
(gl 3 RUA p) (A P (A ps) + []A,
itj+k=N—4

—pu(A pIAVA A A, ST B m) (A ) (A p)K (A m’}
i+j+k+I=N—5

N
14 (-1 _
L A 11234 {A“AVAp[(m +2p5)0 Ar

2
— (B ps)ger] D RGNA P (A Y (A py) + A,
i+j+k=N—4
—pu(A pIAVA A A, ST B m) (A ) (A p)K (A Ps)l}

i+jt k=N —5

+ permutations
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Application: Alien Feynman rules

@ Ghost vertices:

(a) Agreement with [Gehrmann et al., 2023] for O- and 1-gluon vertices and (f f),
dy parts of the 2-gluon vertex

(b) dgz part of 2-gluon vertex new!

(c) 3-gluon vertex new!

o Alien gluon vertices:

(a) Agreement with [Blimlein et al., 2022, Gehrmann et al, 2023] for 2- and 3-gluon
vertices; agreement with [Genrmann et a1, 2023] for (f f), dy parts of the
4-gluon vertex

(b) dgz part of 4-gluon vertex new!

(c) 5-gluon vertex new! [Recently also obtained in [Gehrmann et al, 2024c],

comparison in progress|
@ Alien quark vertices:

(a) Agreement with [Gehrmann et a1, 2023] for O-, 1- and 2-gluon vertices
(b) 3- and 4-gluon vertices new!
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Summary and outlook

@ Accuracy @ hadron colliders: Need higher-order corrections to PDF
evolution (i.e. splitting functions = operator anomalous dimensions)

@ Off-shell renormalization of OMEs = we

@ One way to reconstruct the functional form of the alien operators is
based on the use of generalized gauge symmetry, which is then
promoted to a generalized (anti)-BRST symmetry

@ One then finds classes of EOM and ghost operators, the couplings of
which obey interesting consistency relations

@ We used these relations to reconstruct the full N-dependence of the
1-loop alien couplings necessary to perform the operator
renormalization to 4 loops

@ This should be useful in the reconstruction of the full N-dependence
of the 4-loop splitting functions!

@ Next steps: Generalization to higher orders
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Colour structures

£2b¢ are the QCD structure constants. The other colour structures are in
turn defined as

(f f-)abcd — f-abef-cde

(f f f-)abcde _ fabmfmcnfnde
1

dibed = E[Tr( TATETSTY) + symmetric permutations],

dabcd dabmn fmee fedn
4

abcd abcd abcd
dibed = dgbed — §C ad2bed

dabcde dabcm fmde
4 .

Jacobi identity: (f £)3bed 4 (f f)acdb 4 (f £)adbe — @
Double Jacobi identity:
(f f f)abcde + (f f f)acbed + (f‘ f f)adebc 4 (f f f)aedcb =0
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