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Introduction
At HL-LHC: Statistical/systematic uncertainties ∼ 1%
⇒ Theory needs to keep up!

Q [GeV] δσN3LO δ(scale) δ(PDF-TH)

gg → Higgs mH 3.5% +0.21%
−2.37% ±1.2%

bb̄ → Higgs mH -2.3% +3.0%
−4.8% ±2.5%

NCDY 30 -4.8% +1.53%
−2.54% ±2.8%

100 -2.1% +0.66%
−0.79% ±2.5%

CCDY(W+)
30 -4.7% +2.5%

−1.7% ±3.2%
150 -2.0% +0.5%

−0.5% ±2.1%

CCDY(W−)
30 -5.0% +2.6%

−1.6% ±3.2%
150 -2.1% +0.6%

−0.5% ±2.13%

Table: [Baglio et al., 2022]

δ(PDF-TH) =
1
2

∣∣σNNLO(NNLO PDF)− σNNLO(NLO PDF)
∣∣

σNNLO(NNLO PDF)
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PDF scale dependence

Scale evolution of PDFs is set by the DGLAP equation [Gribov and Lipatov, 1972],

[Altarelli and Parisi, 1977], [Dokshitzer, 1977]

dfi(x , µ2)

d lnµ2 =

∫ 1

x

dy
y Pij(y)fj

(
x
y , µ

2
)

with Pij the QCD splitting functions. These are perturbative quantities
and can be computed as the anomalous dimensions of the leading-twist
operators that define the PDFs

d[Oi ]

d lnµ2 = γ ij [Oj ], γ ij ≡ asγ
ij,(0) + a2

s γ
ij,(1) + ...

γ ij = −
∫ 1

0
dx xNPij(x)

We can distinguish 2 sets of leading-twist operators based on their
representation in the QCD flavour group.
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Leading-twist operators

Flavour non-singlet quark operator

O(N)
q NS;µ1...µN

(x) = S
[
ψλαγµ1Dµ2 . . .DµNψ

]
Flavour singlet quark operator + gluon operator

O(N)
g;µ1...µN (x) =

1
2S
[

F a1
µµ1 Da1a2

µ2 ...DaN−2aN−1
µN−1 F aN−1;µ

µN

]
O(N)

q S;µ1...µN
(x) = S

[
ψγµ1Dµ2 . . .DµNψ

]
with

Dµ = ∂µ − igsT aAa
µ

Dac
µ = ∂µδ

ac + gs f abcAb
µ

F a
µν = ∂µAa

ν − ∂νAa
µ + gs f abcAb

µAc
ν
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Renormalization of gauge invariant operators

To extract the anomalous dimensions of interest, we now need to
renormalize the operators. For this, one needs to take into account mixing
of operators in the same representation. This implies that

the non-singlet quark operators renormalize multiplicatively

O(N)
q NS = ZN [O

(N)
q NS]

the singlet quark and gluon operators mix under renormalizationO(N)
q S

O(N)
g

 =

(
Zqq

N Zqg
N

Zgq
N Zgg

N

)[O(N)
q S ]

[O(N)
g ]


Note: Use the MS-scheme and D = 4 − 2ε dimensional regularization.
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Renormalization of gauge invariant operators

Zqq
N = 1 +

as
ε
γ

qq,(0)
N +

a2
s

2ε

{
1
ε

[
γ

qq,(0)
N (γ

qq,(0)
N − β0) + γ

qg,(0)
N γ

gq,(0)
N

]
+ γ

qq,(1)
N

}
. . .

Zqg
N =

as
ε
γ

qg,(0)
N +

a2
s

2ε

{
γ

qg,(0)
N
ε

(γ
qq,(0)
N + γ

gg,(0)
N − 2β0) + γ

qg,(1)
N

}
+ . . .

Zgq
N =

as
ε
γ

gq,(0)
N +

a2
s

2ε

{
γ

gq,(0)
N
ε

(γ
qq,(0)
N + γ

gg,(0)
N − 2β0) + γ

gq,(1)
N

}
+ . . .

Zgg
N = 1 +

as
ε
γ

gg,(0)
N +

a2
s

2ε

{
1
ε

[
γ

gg,(0)
N (γ

gg,(0)
N − β0) + γ

gq,(0)
N γ

qg,(0)
N

]
+ γ

gg,(1)
N

}
. . .
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Renormalization of gauge invariant operators

Unfortunately, the mixing pattern of the operators is even more
complicated as alluded to above when computing off-shell matrix
elements. In particular, one needs to take into account mixing with
non-gauge-invariant ( ) operators.
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Aliens through history

The appearance of alien1 operators in the renormalization of the
physical ones has been known since the early seventies
[Gross and Wilczek, 1974]. They obtained the physical anomalous dimensions
without accounting for aliens by using lightcone gauge.
The origin of the issue was provided by Dixon and Taylor
[Dixon and Taylor, 1974]. In particular, they showed that the bare Yang-Mills
Lagrangian is invariant under a different set of gauge transformations
as the renormalized one.
→ Construction of the aliens relevant for the computation of the
1-loop anomalous dimensions
2 years later, Joglekar and Lee worked out the general theory of the
renormalization of gauge invariant operators. Their main results are
summarized in 3 theorems [Joglekar and Lee, 1976]

1Term coined in ’94 by [Collins and Scalise, 1994].
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Side-step: Joglekar-Lee theorems

1. The basis of alien operators Ai that mix with the gauge invariant ones
can be chosen such that they are BRST exact

Ai ∼ δBRSTBi .

Here Bi is called the ancestor of Ai .
2. Physical matrix elements of the aliens vanish.
3. The mixing matrix is triangular[OG ]

[OA]
[OE ]

 =

ZGG ZGA ZGE
0 ZAA ZAE
0 0 ZEE

OG
OA
OE

 .
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Aliens through history

The 2-loop anomalous dimensions were computed a few years later
using different gauges: [Floratos et al., 1979, Gonzalez-Arroyo and Lopez, 1980, Floratos et al., 1981]

used the covariant gauge while [Furmanski and Petronzio, 1980] used the axial
gauge
The computations using covariant gauge agreed with one another but
disagreed with the axial gauge one
The issue was solved a decade later by Hamberg and van Neerven in
favour of the axial gauge result [Hamberg and van Neerven, 1992]

Unfortunately, the way forward was not clear; the generalization of the
basis of aliens to higher orders in perturbation theory was unknown.
Nevertheless, the 3-loop anomalous dimensions were computed using
different methods [Vogt et al., 2004]

Sam Van Thurenhout Aliens in QCD 10 / 52



Aliens through history

Finally, after 30 years, significant progress was made in the alien issue
by 2 independent groups
G. Falcioni and F. Herzog were able to derive constraints to
consistently derive the aliens at fixed orders which were solved for
fixed N ≤ 20 [Falcioni and Herzog, 2022]

→ All 4-loop splitting functions now known to N = 20 [Falcioni et al., 2023b,

Falcioni et al., 2023a, Gehrmann et al., 2024a, Falcioni et al., 2024d, Falcioni et al., 2024b, Falcioni et al., 2024a]

On the other hand, [Gehrmann et al., 2023] developed a method to derive the
counterterm Feynman rules for the aliens
→ n2

f contributions to the pure-singlet splitting functions at 4
loops [Gehrmann et al., 2024a]

Focus on method by Giulio and Franz in what’s next
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Construction of the alien operators
The complete gauge-fixed QCD action is written as

S =

∫
dDx (L0 + LGF+G) .

Here L0 represents the classical part of the QCD Lagrangian

L0 = −1
4 Fµν

a F a
µν +

nf∑
f =1

ψ
f
(i /D − mf )ψ

f ,

with
LGF+G = − 1

2ξ (∂
µAa

µ)
2 − ca ∂µDab

µ cb

and
F a
µν = ∂µAa

ν − ∂νAa
µ + gs f abcAb

µAc
ν

Dµ = ∂µ − igsT aAa
µ

Dac
µ = ∂µδ

ac + gs f abcAb
µ

f abc are the standard QCD structure constants.
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Construction of the alien operators

The QCD Lagrangian can be extended to also include the leading-twist
spin-N gauge-invariant operators, which we define as

O(N)
g (x) = 1

2Fν(x)DN−2F ν(x) ,

O(N)
q (x) = ψ(x) /∆ DN−1ψ(x) .

Here ∆µ is a lightlike vector and we introduced the notation

Fµ;a = ∆ν Fµν;a, Aa = ∆µAµ;a, D = ∆µ Dµ, ∂ = ∆µ∂
µ .

These physical operators now mix under renormalization with aliens, which
are (a) proportional to the field EOMs and (b) contain . Schematically
the complete Lagrangian is then

L̃ = L0 + LGF+G + wi Oi +O(N)
EOM +O(N)

c
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Construction of the alien operators

The most general form of the EOM operator is [Falcioni and Herzog, 2022]

O(N)
EOM =

(
D · F a + gsψT a /∆ψ

)
Ga(Aa, ∂Aa, ∂2Aa, ...)

with Ga a generic local function of the gauge field and its derivatives.
Expanding Ga in a series of contributions with an increasing number of
gauge fields then leads to

O(N)
EOM = O(N),I

EOM +O(N),II
EOM +O(N),III

EOM +O(N),IV
EOM + . . .
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Construction of the alien operators

O(N),I
EOM = η(N)

(
D · F a + gsψ /∆T aψ

) (
∂ N−2Aa) ,

O(N),II
EOM = gs

(
D · F a + gsψ /∆T aψ

) ∑
i+j

=N−3

Cabc
ij (∂ iAb)(∂jAc),

O(N),III
EOM = g2

s
(
D · F a + gsψ /∆T aψ

) ∑
i+j+k
=N−4

Cabcd
ijk (∂ iAb)(∂jAc)(∂kAd),

O(N),IV
EOM = g3

s
(
D · F a + gsψ /∆T aψ

) ∑
i+j+k+l
=N−5

Cabcde
ijkl (∂ iAb)(∂jAc)(∂kAd)(∂ lAe).
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Construction of the alien operators
The coefficients Ca1...an

i1...in−1
appearing can be written in terms of a set of

independent colour tensors, each of them multiplying an associated
coupling constant, as follows

Cabc
ij = f abcκij ,

Cabcd
ijk = (f f )abcdκ

(1)
ijk + dabcd

4 κ
(2)
ijk + dabcd

4̂ff κ
(3)
ijk ,

Cabcde
ijkl = (f f f )abcdeκ

(1)
ijkl + dabcde

4f κ
(2)
ijkl

To avoid overcounting: κ-couplings inherit properties of the colour
structures they multiply, e.g. κij = −κji

The standard gauge transformations leave L0 and Oi invariant, but not
O(N)

EOM

⇒ generalized gauge transformation
Aa
µ → Aa

µ + δωAa
µ + δ∆ω Aa

µ
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Construction of the alien operators

Aa
µ → Aa

µ + δωAa
µ + δ∆ω Aa

µ

δωAa
µ = Dab

µ ωb(x),

δ∆ω Aa
µ = −∆µ

[
η(N) ∂N−1ωa + gs

∑
i+j

=N−3

C̃aa1a2
ij

(
∂ iAa1

) (
∂j+1ωa2

)
+ g2

s
∑

i+j+k
=N−4

C̃aa1a2a3
ijk

(
∂ iAa1

) (
∂jAa2

) (
∂k+1ωa3

)

+ g3
s
∑

i+j+k+l
=N−5

C̃aa1a2a3a4
ijkl

(
∂ iAa1

) (
∂jAa2

) (
∂kAa3

) (
∂ l+1ωa4

)
+O(g4

s )

]

Sam Van Thurenhout Aliens in QCD 17 / 52



Construction of the alien operators

C̃abc
ij = f abcηij ,

C̃abcd
ijk = (f f )abcdη

(1)
ijk + dabcd

4 η
(2)
ijk + dabcd

4̂ff η
(3)
ijk ,

C̃abcde
ijkl = (f f f )abcdeη

(1)
ijkl + dabcde

4f η
(2a)
ijkl + daebcd

4f η
(2b)
ijkl .

The generalized gauge symmetry implies that the couplings η(k)n1...nj are
related to κ(k)n1...nj
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Construction of the alien operators

ηij = 2κij + η(N)

(
i + j + 1

i

)
,

η
(1)
ijk = 2κi(j+k+1)

(
j + k + 1

j

)
+ 2[κ(1)ijk + κ

(1)
kji ],

η
(2)
ijk = 3κ(2)ijk ,

η
(3)
ijk = 2[κ(3)ijk − κ

(3)
kji ],

η
(1)
ijkl = 2[κ(1)ij(l+k+1) + κ

(1)
(l+k+1)ji ]

(
l + k + 1

k

)
+ 2[κ(1)ijkl + κ

(1)
ilkj + κ

(1)
likj + κ

(1)
lkij ],

η
(2a)
ijkl = 3κ(2)ij(k+l+1)

(
k + l + 1

k

)
+ 2κ(2)ijkl ,

η
(2b)
ijkl = 2κ(2)lijk .
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Construction of the alien operators

The generalized gauge transformation can now be promoted to a
generalized BRST (gBRST) transformation

Aa
µ → Aa

µ + δcAa
µ + δ∆c Aa

µ

The ghost operator is now generated by the action of gBRST on a suitable
ancestor operator [Falcioni and Herzog, 2022], giving

O(N)
c = O(N),I

c +O(N),II
c +O(N),III

c +O(N),IV
c + . . .
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Construction of the alien operators

O(N),I
c = −η(N)(∂ca)(∂N−1ca),

O(N),II
c = −gs

∑
i+j

=N−3

C̃abc
ij (∂ca)(∂ iAb)(∂j+1cc),

O(N),III
c = −g2

s
∑

i+j+k
=N−4

C̃astu
ijk (∂ca)(∂ iAs)(∂jAt)(∂k+1cu),

O(N),IV
c = −g3

s
∑

i+j+k+l
=N−5

C̃abcde
ijkl (∂ca)(∂ iAb)(∂jAc)(∂kAd)(∂ l+1ce).
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Renormalization
The complete Lagrangian is now

L̃ = L0 + LGF+G + wi Oi +O(N)
EOM +O(N)

c

= L0(Aa
µ, gs) + LGF+G(Aa

µ, ca, c̄a, gs , ξ) +
∑

k
Ck Ok,

where Ck labels all the distinct couplings of the operators,
Ck = {wi, η(N), κ

(i)
n1...nj , η

(k)
n1...nj}. The UV singularities associated with the

QCD Lagrangian are absorbed by introducing the bare fields/parameters

Aa;bare
µ (x) =

√
Z3Aa

µ(x)

ca;bare(x) =
√

Zcca(x)

c̄a;bare(x) =
√

Zc c̄a(x)
gbare

s = µεZggs

ξbare =
√

Z3ξ
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Renormalization
This is not enough to make the OMEs finite. Instead they need an
additional renormalization

Oren
i (x) = Zij Obare

j (x),

The renormalized Lagrangian becomes

L̃ = L0(Aa;bare
µ , gbare

s ) + LGF+G(Aa;bare
µ , ca;bare, c̄a;bare, gbare

s , ξbare)

+
∑

k
Cbare

k Obare
k ,

Cbare
i =

∑
k

Ck Zk i,

where Ck is the (finite) renormalized coupling of the operator Ok. The
UV-finite OMEs featuring a single insertion of Oren

g/q are computed by
setting the renormalized couplings Ci = δi g/q, which gives

Cbare
i = Zg/q i.
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Renormalization
⇒ The couplings of the bare operators ηbare(N), . . . are interpreted as the
renormalization constants that mix the physical operators into the aliens

→ Extracted from the direct calculation of the singularities of the OMEs,
e.g.

ηbare(N) = Zg c = −as
ε

CA
N(N − 1) + O(a2

s )

We note that this quantity is known to O(a3
s )

[Dixon and Taylor, 1974, Hamberg and van Neerven, 1992, Gehrmann et al., 2023]
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Analytic reconstructions based on fixed moments

In [Falcioni and Herzog, 2022, Falcioni et al., 2024b], this setup was used for fixed N ≤ 20. The
available moments can be used to try and constrain an Ansatz for γ(3)ij

Denominators of the form 1
N+α (α > 0)

Harmonic sums S±m1,m2, ...,md (N) =
∑N

i=1 (±1)i i −m1 Sm2, ...,md (i)

Ansatz large: 2 · 36 = 1458 weight-7 S-sums

⇒ Difficult for generic colour structures, simplifications for terms ∼ na
f or

containing ζk

More details can be found in HP2 talk by G. Falcioni
https://agenda.infn.it/event/35067/contributions/233420/

Can the method of Falcioni and Herzog be generalized to arbitrary N?
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Identities between alien couplings

The κ couplings in the EOM operators are chosen to inherit the
properties of the colour structures they multiply, e.g. κij = −κji

Because of gBRST, the η couplings are connected to the κ ones.
An equivalent approach to generate the ghost operators would be to
start from anti-gBRST, for which ωa(x) in the generalized gauge
transformation should be replaced by the anti-ghost field ca(x)

Aa
µ → Aa

µ + δcAa
µ + δ∆c Aa

µ

→ the functional form of the resulting operators is different from
those derived from gBRST
⇒ non-trivial identities for the η-couplings!
These identities allow one to restrict the function space of the
couplings and hence constrain their generic N-dependence.
During this talk: Focus on couplings coming with a string of f’s
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Class II couplings

O(N),II
EOM = gs

(
D · F a + gsψ /∆T aψ

)
f abc

∑
i+j

=N−3

κij(∂
iAb)(∂jAc),

O(N),II
c = −gs f abc

∑
i+j

=N−3

ηij(∂ca)(∂ iAb)(∂j+1cc)

κij + κji = 0, [anti-symmetry of f ]

ηij = 2κij + η(N)

(
i + j + 1

i

)
, [gBRST]

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = 0 [anti-gBRST]
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Class II couplings

Note that the anti-gBRST relation is an example of a conjugation relation,
in the sense that a second application of the sum leads to

i∑
t=0

(−1)t+j
(t + j

j

)
η(i−t)(j+t) = −

i∑
t=0

(−1)t+j
(t + j

j

) i−t∑
s=0

(−1)s+j+t
(s + j + t

j + t

)
η(i−t−s)(j+t+s)

and hence

ηij =
i∑

t=0

(
t + j

j

) i−t∑
s=0

(−1)s
(

s + j + t
j + t

)
η(i−t−s)(j+t+s).

Already encountered in the computation of the anomalous dimensions
of leading-twist operators in non-forward kinematics, see
e.g. [Moch and Van Thurenhout, 2021, Van Thurenhout, 2024]

Great predictive power!
Valuable information about the function space
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Solving conjugation relations

To take full advantage of the anti-gBRST conjugation relations, one
needs to be able to evaluate them analytically
Use principles of symbolic summation: Telescoping and Gosper’s
algorithm!
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Classical telescoping and Gosper’s algorithm
The telescoping algorithm is a well-known method for evaluating finite
sums. Suppose we want to evaluate the following sum

N∑
k=a

f (k)

with a,N ∈ N and a ≤ N. Now, if we can find a function g(N) such that

f (k) = ∆g(k) ≡ g(k + 1)− g(k)

then
N∑

k=a
f (k) =

N∑
k=a

g(k + 1)−
N∑

k=a
g(k)

= g(N + 1)− g(a).

Here, ∆ represents the finite difference operator. The telescoping function
g(N) can be found by application of Gosper’s algorithm [Gosper, 1978].
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Classical telescoping and Gosper’s algorithm

Assume we want to calculate the telescoping function for some sequence
{aN}

aN = ∆b(N).

It is assumed that {aN} is a hypergeometric sequence, that is

aN+1
aN

= q(N)

with q(N) a rational function of N. The steps of Gosper’s algorithm can
then be summarized as follows
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Classical telescoping and Gosper’s algorithm
1 Determine three functions f (x), g(x) and h(x) such that

q(x) = f (x + 1)
f (x)

g(x)
h(x + 1)

and
gcd[g(x), h(x + n)] = 1 (n ∈ N0).

2 Solve the so-called Gosper equation,

f (x) = g(x)y(x + 1)− h(x)y(x),

for the polynomial y(x).
3 If such a polynomial solution does not exist, it means that the sum in

question does not have a hypergeometric closed form. Otherwise, the
telescoping function is determined by

t(x) = h(x)
f (x)y(x) with b(N) = t(N)a(N)

More details can e.g. be found in [Kauers and Paule, 2011]
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Classical telescoping and Gosper’s algorithm
Example: S(N,m) =

∑N
k=0(−1)k(m

k
)

ak+1
ak

=
k − m
k + 1 ⇒ q(x) = x − m

x + 1

1 Choose f (x) = 1, g(x) = x − m and h(x) = x

q(x) = f (x + 1)
f (x)

g(x)
h(x + 1)

2

1 = (x − m)y(x + 1)− x y(x)
Solve with Ansatz: y(x) = a + b x ⇒ y(x) = −1/m

3

t(x) = h(x)
f (x)y(x) = − x

m ⇒ b(N) = −N
m (−1)N

(
m
N

)
⇒ S(N,m) = b(N + 1)− b(0) = (−1)N

(
m − 1

N

)
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Creative telescoping
Generalization to definite summation problems: creative telescoping
algorithm by Zeilberger [Zeilberger, 1991]. The idea is similar to that of classical
telescoping. Suppose we want to evaluate

N∑
k=a

f (N, k) ≡ S(N)

with f (N, k) hypergeometric in both N and k. The way to go about this is
by attempting to find d functions c0(N), . . . , cd(N) and a function g(N, k)
such that

g(N, k + 1)− g(N, k) = c0(N)f (N, k) + ...+ cd(N)f (N + d , k).

Summing both sides, and applying classical telescoping to the left-hand
side then gives

g(N,N + 1)− g(N, a) = c0(N)
N∑

k=a
f (N, k) + ...+ cd(N)

N∑
k=a

f (N + d , k).
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Creative telescoping
This leads to an inhomogeneous recursion relation for the original sum of
the form

q(N) = c0(N)S(N) + ...+ cd(N)S(N + d).

The creative telescoping algorithm can be applied when the sequence
under consideration is holonomic. A sequence {aN} is said to be
holonomic if there exist polynomials p0(x), . . . , pr (x) such that the
following recursion relation is obeyed [Kauers and Paule, 2011]

p0(N)aN + p1(N)aN+1 + · · ·+ pr (N)aN+r = 0 (N ∈ N, pr (N) 6= 0).

For example, the harmonic numbers {S1(N)} form a holonomic sequence
as they obey

(N + 1)S1(N)− (2N + 3)S1(N + 1) + (N + 2)S1(N + 2) = 0.

More details on the summation algorithms reviewed here can e.g. be found
in the excellent books [Graham et al., 1989, Petkovŝek et al., 1996].
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Solving conjugation relations

→ For single sums: Sigma [Schneider, 2004, Schneider, 2007]

Sigma generates and solves recurrence for given summation problem
Solution consists of solution set for homogeneous recurrence +
particular solution
For final closed expression of summation: Determine linear
combination of solutions that has same initial values as the given sum

→ For multiple sums: EvaluateMultiSums [Schneider, 2013, Schneider, 2014]
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Class II couplings

κij + κji = 0, [anti-symmetry of f ]

ηij = 2κij + η(N)

(
i + j + 1

i

)
, [gBRST]

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = 0 [anti-gBRST]

Combining anti-symmetry with gBRST we have

ηij + ηji = η(N)

[(
i + j + 1

i

)
+

(
i + j + 1

j

)]

which gives an idea about the function space of ηij .

Sam Van Thurenhout Aliens in QCD 37 / 52



Class II couplings
Using the RHS of the previous equation as an Ansatz for ηij gives

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = c1 η(N)

[
(−1)j +

(
i + j + 1

i

)]
for even values of N. Hence, we find a consistent solution if c1 = 0 while
c2 remains unconstrained. Assuming that κij lives in the same function
space as ηij , the full set of relations fixes both couplings uniquely

ηij = η(N)

(
N − 2

j

)
,

κij =
η(N)

2

[(
N − 2

j

)
−
(

N − 2
i

)]
Check: Compare with some fixed-N computations
→ Correct for N = 4
→ Incorrect for N > 4
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Class II couplings

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = c1 η(N)

[
(−1)j +

(
i + j + 1

i

)]

The RHS however suggests the inclusion of a new structure: (−1)j . With

ηij = η(N)

[
c1(−1)j + c2

(
i + j + 1

i

)
+ c3

(
i + j + 1

j

)]
we find

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = (c1+c2)η(N)

[(
i + j + 1

i

)
+ (−1)j

]
and hence c1 = −c2.
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Class II couplings
Assuming that κij lives in the same function space as ηij , the full set of
relations fixes both couplings up to 1 free parameter

ηij = η(N)

{
(1 + 2c)

[(
i + j + 1

i

)
− (−1)j

]
− 2c

(
i + j + 1

j

)}
κij = η(N)

{
c
[(

i + j + 1
i

)
−
(

i + j + 1
j

)]
− 1

2(1 + 2c)(−1)j
}

The unknown c can be determined by the computation of 1 fixed-N matrix
element computation. E.g. for N = 6 we have κ30 = 1/24 which sets
c = −3/8

ηij = −η(N)

4

[
(−1)j − 3

(
N − 2
i + 1

)
−
(

N − 2
i

)]

κij = −η(N)

8

[
(−1)j + 3

(
i + j + 1

i

)
− 3
(

i + j + 1
i + 1

)]
The solution above exactly agrees with the known solution
[Dixon and Taylor, 1974, Hamberg and van Neerven, 1992].
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Word of caution: Kernel functions

If an Ansatz is generated using (anti-)gBRST relations, one is in principle
free to add non-zero functions that live in the kernel of these relations. For
example, if one adds a term of the form

− f (N)

4

(
(−1)j +

(
N − 2
i + 1

)
−
(

N − 2
i

))
the corresponding expression for ηij still obeys the constraints. In
particular, substituting in the constraint coming from anti-symmetry and
gBRST one finds [

(−1)i + (−1)j] f (N) = 0.

The left-hand side of this expression always vanishes for all physical (even)
values of N, independent of the functional form of f (N). In general, the
exclusion of this type of function can only be confirmed by comparison
with fixed-N computations.
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Class III couplings

O(N),III
EOM = g2

s
(
D · F a + gsψ /∆T aψ

)
(f f )abcd

∑
i+j+k
=N−4

κ
(1)
ijk (∂

iAb)(∂jAc)(∂kAd),

O(N),III
c = −g2

s (f f )abcd
∑

i+j+k
=N−4

η
(1)
ijk (∂ca)(∂ iAb)(∂jAc)(∂k+1cd)

κ
(1)
ijk + κ

(1)
ikj = 0, [anti-symmetry of f ]

κ
(1)
ijk + κ

(1)
jki + κ

(1)
kij = 0, [Jacobi identity]

η
(1)
ijk = 2κi(j+k+1)

(
j + k + 1

j

)
+ 2[κ(1)ijk + κ

(1)
kji ], [gBRST]

η
(1)
ijk =

i∑
m=0

j∑
n=0

(m + n + k)!
m! n! k! (−1)m+n+kη

(1)
(j−n)(i−m)(k+m+n). [anti-gBRST]
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Class III couplings
The combination of the Jacobi identity with gBRST leads to

η
(1)
ijk + η

(1)
kij + η

(1)
jki = 2κi(j+k+1)

(
j + k + 1

j

)
+ 2κk(i+j+1)

(
i + j + 1

i

)
+ 2κj(i+k+1)

(
i + k + 1

k

)
.

→ relates the class III coupling η(1)ijk to the class II coupling κij , at one
order lower in perturbation theory!
⇒ use it to determine the function space of the all-N expression of η(1)ijk
→ leads to 18-dimensional function space

{
(−1)i+j

(i + j + 1
i

)
,

(N − 2
k + 1

)(i + j + 1
i

)
,

(N − 2
k

)(i + j + 1
i

)
, (−1)j+k

(j + k + 1
j

)
,

(N − 2
i + 1

)(j + k + 1
j

)
,

(N − 2
i

)(j + k + 1
j

)
, (−1)i+k

(i + k + 1
k

)
,

(N − 2
j + 1

)(i + k + 1
k

)
,

(N − 2
j

)(i + k + 1
k

)
+ independent permutations of i, j and k

}
.
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Class III couplings
We assume κ(1)ijk to live in the same function space. Hence in total we have
36 free parameters. Using the relations described above we are able to fix
34 of these. The final 2 free parameters are then fixed using κ(1)110 = 0 and
κ
(1)
121 = 13/336, which follow from the explicit operator renormalization for

N = 6 and N = 8 respectively. Our final result for κ(1)ijk then becomes
[new!]

κ
(1)
ijk =

η(N)

48

{
2(−1)i+j

(
i + j + 1

i

)
+ (−1)i+k

(
i + k + 1

k

)

+ 3(−1)j+k+1
(

j + k + 1
j

)
+

(
i + k + 1

i

)[
2(−1)i+k+1

+ 5
(

N − 1
j + 1

)]
+

(
j + k + 1

k

)[
3(−1)j+k − 10

(
N − 2

i

)
+ 4
(

N − 2
i + 1

)]

+

(
i + j + 1

j

)[
(−1)i+j+1 + 5

(
N − 2

k

)
− 9
(

N − 2
k + 1

)]}
.
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Class III couplings

We have checked that the above expression agrees with explicitly
computed values, following from the renormalization of the operators, up
to N = 20. Substituting this expression into the gBRST relation allows
one to also reconstruct the full N-dependence of η(1)ijk [new!]

η
(1)
ijk = −η(N)

24

{
5(−1)i+j+1

(
i + j + 1

i

)
+ (−1)i+k

(
i + k + 1

k

)

+ 2(−1)j+k+1
(

j + k + 1
j

)
+

(
i + k + 1

i

)[
(−1)i+k + 4

(
N − 2
j + 1

)]

+

(
j + k + 1

k

)[
5(−1)j+k+1 − 3

(
N − 2

i

)
+

(
N − 2
i + 1

)]

+

(
i + j + 1

j

)[
4(−1)i+j − 15

(
N − 2

k

)
− 5
(

N − 2
k + 1

)]}
.
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Class IV couplings

O(N),IV
EOM = g3

s
(
D · F a + gsψ /∆T aψ

)
(f f f )abcde

∑
i+j+k+l
=N−5

κ
(1)
ijkl(∂

iAb)(∂ jAc)(∂kAd)(∂ lAe),

O(N),IV
c = −g3

s (f f f )abcde
∑

i+j+k+l
=N−5

η
(1)
ijkl (∂ca)(∂ iAb)(∂ jAc)(∂kAd)(∂ l+1ce)

κ
(1)
ijkl + κ

(1)
ijlk = 0, [anti-symmetry]

κ
(1)
ijkl + κ

(1)
iklj + κ

(1)
iljk = 0, [Jacobi]

κ
(1)
ijkl + κ

(1)
jilk + κ

(1)
lkji + κ

(1)
klij = 0, [double Jacobi]

η
(1)
ijkl = 2[κ(1)

ij(l+k+1) + κ
(1)
(l+k+1)ji ]

(l + k + 1
k

)
+ 2[κ(1)

ijkl + κ
(1)
ilkj + κ

(1)
likj + κ

(1)
lkij ], [gBRST]

η
(1)
ijkl = −

i∑
s1=0

j∑
s2=0

k∑
s3=0

(s1 + s2 + s3 + l)!
s1! s2! s3! l!

(−1)s1+s2+s3+l
η
(1)
(k−s3)(j−s2)(i−s1)(s1+s2+s3+l) [anti-gBRST]
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Class IV couplings

Combining the double Jacobi identity with the gBRST one allows one to
write η(1)ijkl in terms of κ(1)ijk appearing already in the class III operators at
one order lower in perturbation theory!

η
(1)
ijkl + η

(1)
jilk + η

(1)
lkji + η

(1)
klij = 2[κ(1)

ij(k+l+1) + κ
(1)
(k+l+1)ji ]

(k + l + 1
k

)
+ 2[κ(1)

ji(k+l+1) + κ
(1)
(k+l+1)ij ]

(k + l + 1
l

)
+ 2[κ(1)

lk(i+j+1) + κ
(1)
(i+j+1)kl ]

(i + j + 1
j

)
+ 2[κ(1)

kl(i+j+1) + κ
(1)
(i+j+1)lk ]

(i + j + 1
i

)
.

Again this tells us something about the function space for η(1)ijkl . Taking
into account all the independent permutations of the indices i , k, j and l
this space is now 264-dimensional. Assuming that the functional form of
κ
(1)
ijkl is similar to the one of η(1)ijkl then implies that in total we now have

528 parameters to fix. However, after implementing all of the above
relations, only 8 remain in the end!

→ Explicit expressions in [Falcioni et al., 2024c]
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Application: Alien Feynman rules

With the couplings known, one can derive the Feynman rules of the alien
operators

The Feynman rules for the gauge-invariant quark and gluon operators,
up to the four-loop level, can be found e.g. in [Falcioni and Herzog, 2022,

Gehrmann et al., 2023, Floratos et al., 1977, Floratos et al., 1979, Mertig and van Neerven, 1996,

Kumano and Miyama, 1997, Hayashigaki et al., 1997, Bierenbaum et al., 2009, Klein, 2009, Blümlein, 2001,

Velizhanin, 2012, Velizhanin, 2020, Moch et al., 2017, Moch et al., 2022, Falcioni et al., 2023b, Falcioni et al., 2023a,

Falcioni et al., 2024d, Moch et al., 2024, Gehrmann et al., 2024b, Kniehl and Velizhanin, 2023] and
references therein. The generalization to arbitrary orders in
perturbation theory can be found in [Somogyi and Van Thurenhout, 2024] 2

The alien rules were computed up to two loops in
[Hamberg and van Neerven, 1992],[Matiounine et al., 1998],[Blümlein et al., 2022], and an extension to
the three-loop level was recently presented in [Gehrmann et al., 2023]

2Note that the latter also presents the corresponding rules for the operators with
total derivatives, relevant for non-zero momentum flow through the operator vertex.
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Application: Alien Feynman rules

Gc1c2c3c4c5
µνρστ (p1, p2, p3, p4, p5) =

1 + (−1)N

2
iN−1f c1c2x f xc3y f yc4c5

{
− gµρ∆ν∆σ∆τ

∑
i+j=N−3

κij (∆ · p4)
i (∆ · p5)

j + ∆ρ∆σ∆τ [(p1 + 2p2)µ∆ν

− (∆ · p2)gµν ]
∑

i+j+k=N−4
κ
(1)
ijk (∆ · p3)

i (∆ · p4)
j (∆ · p5)

k + [p2
1∆µ

− p1µ(∆ · p1)]∆ν∆ρ∆σ∆τ

∑
i+j+k+l=N−5

κ
(1)
ijkl (∆ · p2)

i (∆ · p3)
j (∆ · p4)

k (∆ · p5)
l
}

+
1 + (−1)N

2
iN−1dc1c2c3c4c5

4f

{
∆µ∆ν∆ρ[(p4 + 2p5)σ∆τ

− (∆ · p5)gστ ]
∑

i+j+k=N−4
κ
(2)
ijk (∆ · p1)

i (∆ · p2)
j (∆ · p3)

k + [p2
1∆µ

− p1µ(∆ · p1)]∆ν∆ρ∆σ∆τ

∑
i+j+k+l=N−5

κ
(2)
ijkl (∆ · p2)

i (∆ · p3)
j (∆ · p4)

k (∆ · p5)
l
}

+ permutations
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Application: Alien Feynman rules

Ghost vertices:
(a) Agreement with [Gehrmann et al., 2023] for 0- and 1-gluon vertices and (f f ),

d4 parts of the 2-gluon vertex
(b) d4̂ff part of 2-gluon vertex new!
(c) 3-gluon vertex new!

Alien gluon vertices:
(a) Agreement with [Blümlein et al., 2022, Gehrmann et al., 2023] for 2- and 3-gluon

vertices; agreement with [Gehrmann et al., 2023] for (f f ), d4 parts of the
4-gluon vertex

(b) d4̂ff part of 4-gluon vertex new!
(c) 5-gluon vertex new! [Recently also obtained in [Gehrmann et al., 2024c],

comparison in progress]
Alien quark vertices:
(a) Agreement with [Gehrmann et al., 2023] for 0-, 1- and 2-gluon vertices
(b) 3- and 4-gluon vertices new!
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Summary and outlook

Accuracy @ hadron colliders: Need higher-order corrections to PDF
evolution (i.e. splitting functions = operator anomalous dimensions)
Off-shell renormalization of OMEs ⇒
One way to reconstruct the functional form of the alien operators is
based on the use of generalized gauge symmetry, which is then
promoted to a generalized (anti)-BRST symmetry
One then finds classes of EOM and ghost operators, the couplings of
which obey interesting consistency relations
We used these relations to reconstruct the full N-dependence of the
1-loop alien couplings necessary to perform the operator
renormalization to 4 loops
This should be useful in the reconstruction of the full N-dependence
of the 4-loop splitting functions!
Next steps: Generalization to higher orders

Sam Van Thurenhout Aliens in QCD 51 / 52



End 3

Thank you for your attention!

3Part of this work has been supported by grant K143451 of the National Research,
Development and Innovation Fund in Hungary.
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Colour structures

f abc are the QCD structure constants. The other colour structures are in
turn defined as

(f f )abcd = f abef cde ,

(f f f )abcde = f abmf mcnf nde ,

dabcd
4 =

1
4! [Tr(T a

AT b
AT c

AT d
A ) + symmetric permutations],

dabcd
4ff = dabmn

4 f mcef edn,

dabcd
4̂ff = dabcd

4ff − 1
3CAdabcd

4 ,

dabcde
4f = dabcm

4 f mde .

Jacobi identity: (f f )abcd + (f f )acdb + (f f )adbc = 0
Double Jacobi identity:
(f f f )abcde + (f f f )acbed + (f f f )adebc + (f f f )aedcb = 0
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