

Antal Jakovác

A Novel Approach to Artificial Intelligence

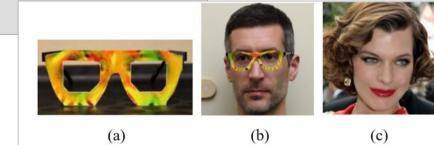

AIME 2024 Budapest, Hungary, November 21-22, 2024 MT Kurbucz P Pósfay A Telcs TS Biró

Introduction: successes of AI

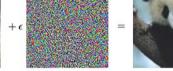
Neural networks provided a lot of magnificent achievements

classification (dog breeds, faces, birdsong, flowers, etc.)
text generation (chatGPT, Bing, Bard, Vicuna23B, etc.)
image generation (midjourney, Dall-E, Dreamstudio, etc.)
autonomous cars / AI driving assistants
etc.

- Billion USD business (2023: ~ 200 bUSD)
- dangerous or advantageous?
 (jobs, information access and safety, decision making,...)
- cultivate or regulate?


Introduction: AI challenges

We can not address certain problems...


- pen or not pen; "I don't know" (they need balanced datasets)
- generalization ("catastrophic forgetting")
- error control (prone to adversarial attacks, hallucinations)

planning

Intelligent from certain points of view, but certainly not "thinking machines"

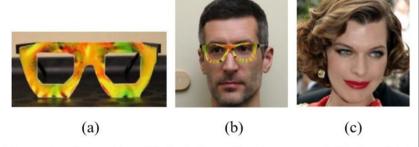
4: The eveglass frames (a) used by Luio Bauer (b) to impersonate Milla Jovovich (c)

"gibbon

99.3% confidence

"panda" 57.7% confidence

Introduction: AI challenges


We can not address certain problems...

- pen or not pen; "I don't know" (they need balanced datasets)
- generalization ("catastrophic forgetting")
- error control (prone to adversarial attacks, hallucinations)

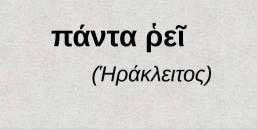
planning

Intelligent from certain points of view, but certainly not "thinking machines"

4: The eveglass frames (a) used by Luio Bauer (b) to impersonate Milla Jovovich (c)

How can we approach "thinking" – what was the question, if the answer is human intelligence? (Turing test, classification task, \dots)

Introduction: back to the origin...


What is the intelligence good for?

Introduction: what is a pen?

Motto:

panta rhei: everything flows (Heraclitus) We get all information in time, but ... **nothing remains the same in time:** (example: a pen)

- move position
- change shape
- change matter content
- change microstate or quantum state

What we refer to as "a pen" is in fact a set of states.

The important question is: what defines this set?

Introduction: what is a pen?

What defines this set? the question to approach *intelligence*

present day (DNN) approach:

- we need someone to tell what a pen is (training, supervised learning)
- image recognition: we use universal function approximator (neural networks)
- seek a function that tells apart e.g. pens and pencils

• **technically:** adjust parameters of trial function until appropriate accuracy $f(x; \alpha_1 \dots \alpha_n) \implies f(x; \alpha_1^* \dots \alpha_n^*) \approx I_P(x)$

Leads to the aforementioned problems

Persistent concepts

Is there another way?

- everything flows, but we want to ensure our existence for a longer time period
- we have to do predictions \rightarrow need some stability!
- we need quantities that are the same in the future as in the past

We need to find **conserved quantities** (laws) in the observed data!

Persistent concepts

We need to find conserved quantities (laws) in the observed data!

Remarks:

- The important (relevant) information is what remains stable
 → laws (rules) are the relevant features of a phenomenon
- We characterize an item with a lot of laws (e.g. small, four-legged, furry, round eared, squeaking, etc. animal)
- laws are inherent properties of the data (data driven), no need to annotate (unsupervised → supervised learning, when the label is part of the time series)

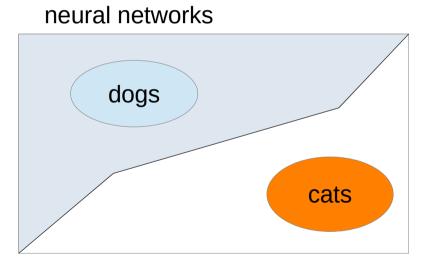
Persistent concepts: science

Surprisingly robust – in fact all of our concepts come from conservation laws!

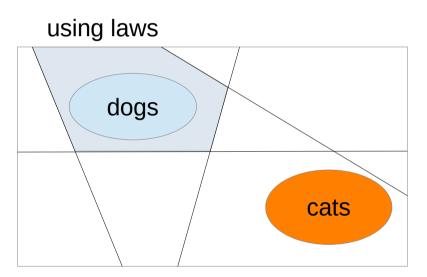
In science:

- objects: we observe solid states with definite shape → remains constant while changing place, time, rotate, etc. → in a gaseous environment, "object" concept would be useless
- angle: consider two lines, observers see it in different position, rotation; the invariant property is the angle
- **physics laws:** persistent relation between measurable quantities: e.g. Newton law: ma - F = 0 is true for all times
- gas molecules take different configurations, but what matters macroscopically are the (quasi) conserved quantities: volume, temperature, particle number, etc

Persistent concepts: finance



All of our concepts come from conservation laws:


- **Finance**: fluctuating prices S(t) make predictions difficult; the goal is to find some persistent concepts
 - → price distribution is more stable $P(S, \dot{S},...) \rightarrow$ market model
 - to achieve persistency we combine assets \rightarrow hedging, indexes
 - lack of arbitrage, extensive hedging \rightarrow risk neutral market, martingales and pricing
 - for better predictive power we need to find more conserved quantities!
- to characterize animals we consider persistent properties → species, breeds taxonomy collects these properties in a hierarchical system

Laws and classification

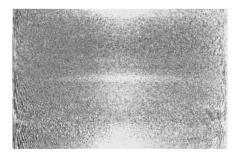
Classification strategies:

System 1: few (but complicated) laws, fast evaluation, specific, not controlled

System 2: more (but simpler) laws, slower evaluation, not specific, control each other

Daniel Kahneman: Thinking, fast and slow – System 1,2 in human psychology

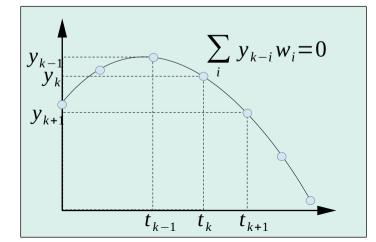
Persistent concepts: representation

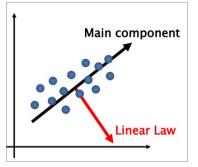

mathematically a persistent concept or conservation law can be expressed as

$$f(x)=0, \forall x \in X$$

• how can we find the appropriate law? assume digital input, i.e. $x \in X = \{0,1\}^N$, $|X| = 2^N$

- then the number of possible $X \rightarrow \{0,1\}$ functions is $2^{|X|}$: **impossible to explore**!
- we single out some functional space:
 - shapes, textures \rightarrow humans are good
 - equivalent representations can be not recognizable \rightarrow AI may help





Laws in time series: training

Mathematical procedure: LLT MT Kurbucz, P Pósfay, A Jakovác - Scientific Reports, 2022

- find rules in sub-samples, e.g. linear relation
 - → database: samples from time series with uniform steps $Y_{ki} = y((k-i)\Delta t)$, i=1...l
 - → for subsamples: best linear relation $F(Y_k) = \sum Y_{ki} w_i = (Yw)_k = \text{minimal}$ $y = \sin^i(\omega t + \phi) \iff y_{k+1} - 2y_k \cos(\omega \Delta t) + y_{k-1} = 0$
- representation of nonlinear laws:
 - locally linear
 - multiple laws
 - continue finding local laws until the training set can be represented appropriately
- result: each element of the training set is represented by some of the laws

Laws in time series: classification

Mathematical procedure:

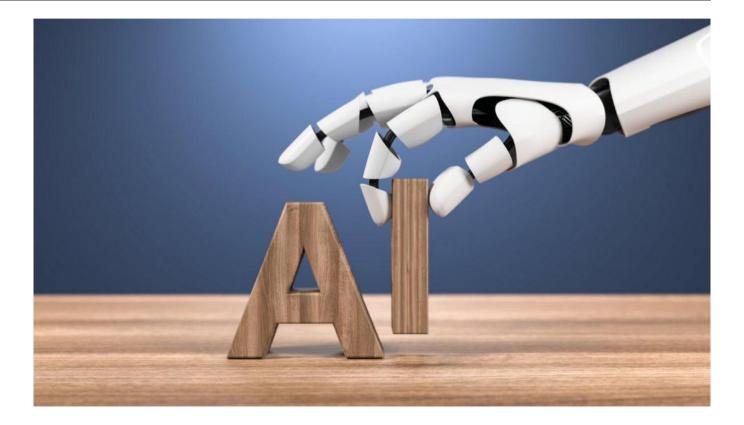
- new sample arrives
 - try the laws of both classes
 - keep the bests (top 5%)
 - predicted class that performs the best use standard classifiers (SVM, KNN)

Dataset	Accuracy	Training time	Benchmark
Ford A	97.5%	916 sec	97-98%
Ford B	94.3%	3070 sec	83-92%
AReM	100%	10 sec	99.6%
Gun_Point	96.7%	8 sec	100%

- → if no laws work: none of the classes \rightarrow outlier analysis (e.g. ECG signal analysis)
- benchmarking: publicly available databases
- applications: mechanical motions, ECG signal processing, Bitcoin price prediction, etc.

Persistent concepts: thinking

- relevant concepts serve as coordinates: we characterize the observed items with concepts (e.g. small, four-legged, furry, round eared, squeaking, etc. animal)
- often used combinations promote to standalone concepts (e.g. chair)


concepts are related

- → coexistence, consecutiveness, causality \rightarrow new laws (e.g. "fire hot = 0" or "[rain now] [wet street later] = 0")
- → humans tend to establish these relations easily → not always correct, needs later refinement! (e.g. "[wet street now]-[rain earlier]=0" not necessarily true)
- **context**: relevant concepts depend on the environment (e.g. scale, or role) \rightarrow change relevant concepts (renormalization group)
- **model:** net of concepts form a dynamical model of the reality \rightarrow thinking

Conclusions

- we need to maintain ourselves (give predictions) in an ever flowing environment, thus we need persistent quantities (laws, relevant features)
- thus we need to find persistent phenomena (laws): these are our concepts
 - → **DNN:** a single law for each class, fast, uncontrolled, specific \rightarrow System 1
 - generic laws: data driven, not specific, slower, controlled \rightarrow System 2
- we need a functional space to seek laws \rightarrow LLT: multilinear feature transformation
- generic laws allow abstract, general, structured, dynamic modeling \rightarrow thinking

