Hybrid Quantum-Classical Reinforcement Learning in Latent Observation Spaces

Dániel T. R. Nagy, Csaba Czabán, Bence Bakó, Péter Hága, Zsófia Kallus, and Zoltán Zimborás

AIME 2024

Outline

- Motivation
- RL, PPO, QRL with PPO
- Latent-space QRL
- Numerical results
- Conclusions

- Quantum computational supremacy demonstrated on:
 - Superconducting device by Google (2019) <u>https://www.nature.com/articles/s41586-019-1666-5</u>
 - Photonic
 - Xanadu, 2022: <u>https://www.nature.com/articles/s41586-022-04725-x</u>
 - Jiuzhang 3.0, 2023: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601

- Quantum computational supremacy demonstrated on:
 - Superconducting device by Google (2019) <u>https://www.nature.com/articles/s41586-019-1666-5</u>
 - Photonic
 - Xanadu, 2022: <u>https://www.nature.com/articles/s41586-022-04725-x</u>
 - Jiuzhang 3.0, 2023: <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601</u>
- NISQ: Noisy Intermediate-Scale Quantum Devices
 - Today already 50-100 noisy qubits (NISQ)
 - Early versions of error correction
 - Approaching regime of potential practical quantum advantage

- NISQ-era candidates for practical quantum advantage:
 - Simulation of quantum chemistry and many-body systems
 - Variational quantum optimization methods like QAOA
 - Quantum Machine Learning (Includes Quantum Reinforcement Learning)
 - Hybrid Quantum-Classical methods enabled by classical HPC

- QRL is limited by the available QPU sizes
 - Many RL environments have high dimensional state spaces (e.g. visual data)
 - We would need large scale QPUs to encode raw features into quantum states
 - Proposal: use latent features extracted by classical algorithms

Reinforcement Learning

- Reinforcement Learning (RL) is a method designed to optimally solve a control problem in a simulated or real-world environment.
- In RL, an Agent is observing the state of the environment and choses actions accordingly.
- After the agent performs the action, the environment returns a reward and the next state.

Reinforcement Learning

 The goal is to train an agent which maximizes the discounted cumulative reward,

$$R = \sum_{t} \gamma^{t} r_{t}$$

• Such Agents are usually implemented as NNs.

Reinforcement Learning

Source: https://spinningup.openai.com/

- PPO uses two function approximators (NNs): an Actor and a Critic.
- Actor: choses an action according to a policy π.

 Critic : receives state & reward and calculates the temporal difference error.

• The TD Error is used to update both Actor and Critic networks.

 s_t , a_t , r_t are the state, action & reward at timestep t.

 $\pi_{ heta}(oldsymbol{\cdot}|s)$ is the policy, where theta are the tunable parameters.

 $r_t(heta) = \pi_ heta/\pi_{ heta_{
m old}}$ is the ratio of the new and old policies.

 $V^{\pi}(s)$ is the value function used by the Critic.

 $\hat{A}_t = \sum_{l=0}^{T-t-1} (\gamma \lambda)^l \delta_{t+l}$ is the estimated advantage with $\delta_t = r_t + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$

The advantage function estimates the extra reward that could be obtained by the agent by taking that particular action.

Critic Loss:

$$\mathcal{L}^{VF} = \mathbb{E}_{t} \left[\left(V^{\pi}(\mathbf{s}_{t}) - V^{\pi}_{\text{targ}}(\mathbf{s}_{t}) \right)^{2} \right]$$

Clipped Surrogate Objective:

$$\mathcal{L}^{\text{CLIP}}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}\left(r_t(\theta), \epsilon \right) \hat{A}_t \right) \right]$$

PPO Objective:

$$\mathcal{L}^{\text{PPO}} = \mathcal{L}^{\text{CLIP}}(\theta) + c_1 S \left[\pi_{\theta}\right] + c_2 \text{Reg}(\theta)$$

Quantum Reinforcement Learning with PPO

- Substitute the classical policy with a QNN
- Encode states into q-states, compute actions from measurements
- The rest of the system is classical
- Optimize the QNN policy parameters via gradient descent

Latent-space QRL

- As mentioned: environments often have high dimensional observables
- We use a classical AE for feature extraction, and encode latent features
- Classical AE: may be pretrained & frozen or trained together with the agent.

Updated Parameters

- We tested this approach with various configurations:
 - Two environments: Cartpole-v1 and Maze-v0
 - Various AE sizes, and various number of QNN layers
 - Both qubit-based and photonic QNNs
 - Compared with fully classical baselines

(a) Cart-pole balancing problem

- CartPole-v1 environment
- dim(4) real-valued vector
- 2 possible actions: left, right
- Keep the vertical deviation less than 15 degrees

(b) Visual navigation problem

- Maze-v0 environment
- 48x48 grayscale image
- 4 possible actions: up, down, left, right
- The agent (blue) needs to find the target (red)

Each curve is a smoothed average over five agents run in parallel

We compare the effect of increasing AE expressibility for different number of QNN layers. Experiments were run using the CartPole-v1 environment and qubit-based agents.

— L=3	— L=6	••• optimal

(a) Comparing photonic hybrid QRL agent with 3 layers and fully classical RL agent

(b) Comparing photonic hybrid QRL agent with 6 layers and fully classical RL agent

We compare 3- and 6-layer photonic AE+QNN agents (blue) with fully classical agents of similar parameter count (orange, red). Experiments were run on the Maze-v0 environment.

Conclusions

- We demonstrated that the AE+QNN method enables the application of QRL for high dimensional environments.
- We showed that jointly training the classical AE and a QRL agent is necessary for fast convergence.
- We see a tradeoff between AE size and QNN layer count
- Using photonic agents, the AE + QNN method can outperform the fully classical approach on the Maze-v0 environment

Conclusions

arxiv:241018284

Code on Github

Thank You

AIME 2024

References

[1] Dunjko, V., Taylor, J.M., Briegel, H.J.: Advances in quantum reinforcement learning. In: 2017
 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 282–287
 (2017)

[2] Hoof, H., Chen, N., Karl, M., Smagt, P., Peters, J.: Stable reinforcement learning with autoencoders for tactile and visual data. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3928–3934 (2016)

 [3] Killoran, N., Bromley, T. R., Arrazola, J. M., Schuld, M., Quesada, N., & Lloyd, S. (2019). Continuous-variable quantum neural networks.
 Phys. Rev. Research, 1, 033063. doi:10.1103/PhysRevResearch.1.033063

 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, May 2015. doi: 10.1038/nature14539. URL <u>https://doi.org/10.1038/nature14539</u>.

[5] <u>Proximal policy optimization algorithms</u>

J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov - arXiv preprint arXiv:1707.06347, 2017

[6] Nagy, D., Tabi, Z., Hága, P., Kallus, Z., and Zimborás, Z., "Photonic Quantum Policy Learning in OpenAl Gym arXiv:2108.12926.

Suppplimentary information

Environment	platform	QNN	QNN params
		layers	
CartPole-v1	qubit	1	6
CartPole-v1	qubit	2	12
CartPole-v1	qubit	3	18
CartPole-v1	qubit	6	32
CartPole-v1	qumode	1	14
CartPole-v1	qumode	3	42
CartPole-v1	qumode	6	84

Environment	platform	\mathbf{QNN}	QNN params
		layers	
Maze-v0	qubit	1	24
Maze-v0	qubit	3	72
Maze-v0	qubit	5	120
Maze-v0	qumode	1	94
Maze-v0	qumode	3	282
Maze-v0	qumode	6	564

Platform	Number of layers	CNN param count	convAE + QNN param count
qumode	1	519	487 (94 + 172 + 221)
qumode	3	731	675 (282 + 172 + 221)
qumode	6	974	957 (564 + 172 + 221)
qubit	1	517	491 (24 + 210 + 257)
qubit	3	556	539(72 + 210 + 257)
qubit	5	609	587 (120 + 210 + 257)