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Motivation

• Quantum computational supremacy demonstrated on:

• Superconducting device by Google 
(2019) https://www.nature.com/articles/s41586-019-1666-5

• Photonic 
• Xanadu, 2022: https://www.nature.com/articles/s41586-022-04725-x

• Jiuzhang 3.0, 2023: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601

https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-022-04725-x
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601
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• NISQ: Noisy Intermediate-Scale Quantum Devices

• Today already 50-100 noisy qubits (NISQ)

• Early versions of error correction

• Approaching regime of potential practical quantum advantage

https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-022-04725-x
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601


Motivation

• NISQ-era candidates for practical quantum advantage:

▪ Simulation of quantum chemistry and many-body systems

▪ Variational quantum optimization methods like QAOA

▪ Quantum Machine Learning (Includes Quantum Reinforcement Learning)

▪ Hybrid Quantum-Classical methods enabled by classical HPC



Motivation

• QRL is limited by the available QPU sizes

▪ Many RL environments have high dimensional state spaces (e.g. visual data)

▪ We would need large scale QPUs to encode raw features into quantum states

▪ Proposal: use latent features extracted by classical algorithms



Reinforcement Learning
• Reinforcement Learning (RL) is a 

method designed to optimally solve 
a control problem in a simulated or 
real-world environment.

• In RL, an Agent is observing the 
state of  the environment and choses 
actions accordingly.

• After the agent performs the action, 
the environment returns a reward and 
the next state.



Reinforcement Learning

• The goal is to train an agent 
which maximizes the discounted 
cumulative reward,

• Such Agents are usually 
implemented as NNs.



Reinforcement Learning

Model-based: have access to a 
model of the environment

Model-free: do not access the 
model of the environment

Source: https://spinningup.openai.com/

We will use Proximal 
Policy Optimization



Proximal Policy Optimization (PPO)

• PPO uses two function 
approximators (NNs): 
an Actor and a Critic.

• Actor: choses an action 
according to a policy π.



Proximal Policy Optimization (PPO)

• Critic : receives state & 
reward and calculates 
the temporal difference 
error.

• The TD Error is used to 
update both Actor and 
Critic networks.



Proximal Policy Optimization (PPO)

is the value function used by the Critic.

is the policy, where theta are the tunable parameters.

is the ratio of the new and old policies.

is the estimated advantage with

are the state, action & reward at timestep t., ,

The advantage function estimates the extra reward that could be obtained by the agent by taking that 
particular action.



Proximal Policy Optimization (PPO)

Critic Loss:

Clipped Surrogate Objective:

PPO Objective:



Quantum Reinforcement Learning with PPO

• Substitute the classical 
policy with a QNN

• Encode states into q-states, 
compute actions from 
measurements

• The rest of the system is 
classical

• Optimize the QNN policy 
parameters via gradient 
descent



Latent-space QRL
• As mentioned: environments 

often have high dimensional 
observables

• We use a classical AE for 
feature extraction, and 
encode latent features

• Classical AE: may be 
pretrained & frozen or 
trained together with the 
agent.



Latent-space QRL

• We optimize the hybrid 
system via a combined loss 
function:

• Optionally, the AE can be pre-
trained 



Numerical experiments

• We tested this approach with various configurations:

• Two environments: Cartpole-v1 and Maze-v0

• Various AE sizes, and various number of QNN layers

• Both qubit-based and photonic QNNs

• Compared with fully classical baselines



Numerical experiments

• Maze-v0 environment
• 48x48 grayscale image
• 4 possible actions: up, down, left, right
• The agent (blue) needs to find the target 

(red)

• CartPole-v1 environment
• dim(4) real-valued vector
• 2 possible actions: left, right
• Keep the vertical deviation less than 

15 degrees 



Numerical experiments



Numerical experiments

Each curve is a smoothed average over five agents run in parallel



Numerical experiments

We compare the effect of increasing AE expressibility for different number of QNN layers. 
Experiments were run using the CartPole-v1 environment and qubit-based agents.



Numerical experiments

We compare 3- and 6-layer photonic AE+QNN agents (blue) with fully classical agents of 
similar parameter count (orange, red). Experiments were run on the Maze-v0 environment.



Conclusions

• We demonstrated that the AE+QNN method enables the application of QRL 
for high dimensional environments.

• We showed that jointly training the classical AE and a QRL agent is 
necessary for fast convergence.

• We see a tradeoff between AE size and QNN layer count

• Using photonic agents, the AE + QNN method can outperform the fully 
classical approach on the Maze-v0 environment



Conclusions

arxiv:241018284 Code on Github

https://arxiv.org/abs/2410.18284
https://github.com/Budapest-Quantum-Computing-Group/hybrid_latent_qrl
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