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Motivation

* Quantum computational supremacy demonstrated on:

* Superconducting device by Google
(2019) https://www.nature.com/articles/s41586-019-1666-5

e Photonic

e Xanadu, 2022: https://www.nature.com/articles/s41586-022-04725-x
 Jiuzhang 3.0, 2023: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601
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* NISQ: Noisy Intermediate-Scale Quantum Devices
* Today already 50-100 noisy qubits (NISQ)
 Early versions of error correction
* Approaching regime of potential practical guantum advantage


https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-022-04725-x
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601

Motivation

* NISQ-era candidates for practical quantum advantage:
= Simulation of quantum chemistry and many-body systems
= Variational quantum optimization methods like QAOA

* Quantum Machine Learning (Includes Quantum Reinforcement Learning)

* Hybrid Quantum-Classical methods enabled by classical HPC



Motivation

* QRL s limited by the available QPU sizes
* Many RL environments have high dimensional state spaces (e.g. visual data)

= We would need large scale QPUs to encode raw features into quantum states

= Proposal: use latent features extracted by classical algorithms




Reinforcement Learning

* Reinforcement Learning (RL) is a
) method designed to optimally solve
:l Agent I a control problem in a simulated or

real-world environment.
St 't
A1
--------- Gl W i * In RL, an Agent is observing the
St+1 T't41 state of the environment and choses
actions accordingly.

Environment <——

» After the agent performs the action,
the environment returns a reward and
the next state.



Reinforcement Learning

* The goal is to train an agent
:l" which maximizes the discounted
cumulative reward,

v Af L L
--------- & R=) 2'n
{

Environment <—— * Such Agents are usually
implemented as NNs.




Reinforcement Learning

RL Algorithms Model-based: have access to a
Model-free: do not access the _
. | model of the environment
model of the environment \ s N /
Model-Free RL Model-Based RL
We will use Proximal 1 3 1 R}
Policy Optimization Policy Optimization Q-Learning Learn the Model Given the Model
‘Policy Gradient < > DQN » World Models \—>{ AlphaZero
= DDPG <
‘ A2C / A3C [« > C51 > I2A
> TD3 <
PPO > QR-DQN >  MBMF
> SAC <
‘ TRPO ’4— > HER > MBVE

Source: https://spinningup.openai.com/



Proximal Policy Optimization (PPO)

e PPO uses two function

—»[ Actor J approximators (NNs):

1 an Actor and a Critic.

action
TD error >

Environment = )
e Actor: choses an action

according to a policy m.

reward

Y

e

state



Proximal Policy Optimization (PPO)

—»[ Actor

]
)

A

TD error

Y

action

>

e

reward

Environment =

state

* Critic : receives state &
reward and calculates
the temporal difference
error.

e The TD Error is used to
update both Actor and
Critic networks.



Proximal Policy Optimization (PPO)

St , a;t , Tt are the state, action & reward at timestep t.

mo(-|s)

is the policy, where theta are the tunable parameters.

Tt (9) — 7T0/7T001d is the ratio of the new and old policies.

is the value function used by the Critic.

Z (YA)'0:41 s the estimated advantage with 6 = ¢ + YV ™ (s111) — V™ (s1)

=0

The advantage function estimates the extra reward that could be obtained by the agent by taking that
particular action.



Proximal Policy Optimization (PPO)

Critic Loss:

LYF = E[(V™(s1) ~ Vieg(s0))’]

t

Clipped Surrogate Objective:
L () = R, [min (rt(B)/Alt, clip (7¢(8), €) /Alt)}

PPO Objective:

LPPO = LOME(9) 4 1S [mg] + coReg()



Quantum Reinforcement Learning with PPO

Hybrid Agent Training
Quantum Actor
PPO optimizer P o <é>
(classical) t@ T

action

state

T

Replay Classical Critic
Memory
0 A

I I N I N BN BN BN BN BN BN BN BN B BN B B B B Em o mm

reward

Environment

Substitute the classical
policy with a QNN

Encode states into g-states,
compute actions from
measurements

The rest of the system is
classical

Optimize the QNN policy
parameters via gradient
descent



Latent-space QRL

As mentioned: environments
often have high dimensional
observables

We use a classical AE for
feature extraction, and
encode latent features

Classical AE: may be
pretrained & frozen or
trained together with the
agent.

v

PPO Loss

\ 4

- - -4 Combined Loss

Reconstruction

Loss

A

/m _______ 1

Classical Action ay

@
S

Environment

Observable x;

Encoder § /« ---------

Latent feature z;

Quantum Policy 7

Reconstructed Observable X;

Ll <

Updated Parameters



Latent-space QRL oty | ot | e

Environment )
v
* We optimize the hybrid PPO Loss
system via a combined loss Observable x;
function: .
- - -1 Combined Loss
Encoder & /¢ ---------
(PPO+AE) __ p(PPO) (AE) :
L =L T Cae£ | Reconstruction |
+ t Poli
Loss Latent feature z; ! Quantum Policy 7
A :

trained

Reconstructed Observable X;

E /m ——————— 1

e Optionally, the AE can be pre-

Ll <

Updated Parameters



Numerical experiments

 We tested this approach with various configurations:
 Two environments: Cartpole-vl and Maze-v0O
* \Various AE sizes, and various number of QNN layers
 Both qubit-based and photonic QNNs

e Compared with fully classical baselines



Numerical experiments

“

(a) Cart-pole balancing problem

* CartPole-vl environment

e dim(4) real-valued vector

e 2 possible actions: left, right

* Keep the vertical deviation less than
15 degrees

(b) Visual navigation problem

* Maze-v0 environment

e 48x48 grayscale image

* 4 possible actions: up, down, left, right

 The agent (blue) needs to find the target
(red)
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Numerical experiments
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curves for qubit based agents curves for photonic agents

Each curve is a smoothed average over five agents run in parallel



Numerical experiments
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(a) Increasing number of QNN layers (b) Increasing number of QNN layers
trained jointly with small AE trained jointly with large AE

We compare the effect of increasing AE expressibility for different number of QNN layers.
Experiments were run using the CartPole-vl environment and qubit-based agents.



Numerical experiments
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(b) Comparing photonic hybrid QRL agent
with 6 layers and fully classical RL agent

We compare 3- and 6-layer photonic AE+QNN agents (blue) with fully classical agents of
similar parameter count (orange, red). Experiments were run on the Maze-v0 environment.



Conclusions

* We demonstrated that the AE+QNN method enables the application of QRL
for high dimensional environments.

* We showed that jointly training the classical AE and a QRL agent is
necessary for fast convergence.

* We see a tradeoff between AE size and QNN layer count

* Using photonic agents, the AE + QNN method can outperform the fully
classical approach on the Maze-vO environment



Conclusions

arxiv:241018284 Code on Github



https://arxiv.org/abs/2410.18284
https://github.com/Budapest-Quantum-Computing-Group/hybrid_latent_qrl

Thank You

FIUN | = -
REN UWIBNEr -
ERICSSON

(c}[\\“] Quanturm Information - e mon (& ELTE

HUNGARY N"T'i';’}}ﬁié@iﬁ%ﬁgﬁ&%ﬁ““ THE NRDI FUND [ ESTVOS LORAND

UNIVERSITY
AIME 2024

@B




References

[1] Dunjko, V., Taylor, J.M., Briegel, H.J.: Advances in guantum reinforcement learning. In: 2017
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 282—-287
(2017)

[2] Hoof, H., Chen, N., Karl, M., Smagt, P., Peters, J.: Stable reinforcement learning with autoen-
coders for tactile and visual data. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3928-3934 (2016)

[3] Killoran, N., Bromley, T. R., Arrazola, J. M., Schuld, M., Quesada, N., & Lloyd, S. (2019).
Continuous-variable quantum neural networks.
Phys. Rev. Research, 1, 033063. doi:10.1103/PhysRevResearch.1.033063

[4] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436—-444,
May 2015. doi: 10.1038/nature14539. URL https://doi.org/10.1038/nature14539.

[5] Proximal policy optimization algorithms
J Schulman, F Wolski, P Dhariwal, A Radford, O Klimov - arXiv preprint arXiv:1707.06347, 2017

[6] Nagy, D., Tabi, Z., Haga, P., Kallus, Z., and Zimboras, Z., “Photonic Quantum Policy Learning
in OpenAl Gym arXiv:2108.12926.


https://doi.org/10.1038/nature14539
https://scholar.google.com/scholar?oi=bibs&cluster=2664197784944153194&btnI=1&hl=en

Suppplimentary information

Environment | platform QNN QNN params Environment | platform QNN QNN params
layers layers
CartPole-vl qub%t 1 6 Maze-vO0 qubit 1 24
Corelet [ e |2 : fazevd | qubi |3 E
CartPole-vi qubit 6 32 Maze-v0 qubit 5 120
CartPole-v1l qumode 1 14 Maze-v0 qumode 1 94
CartPole-vl qumode 3 42 Maze-v0 qumode 3 282
CartPole-vi1 qumode 6 84 Maze-vO0 qumode 6 064
Platform | Number of layers | CNN param count | convAE + QNN param count
qumode 1 519 487 (94 + 172 + 221)
qumode 3 731 675 (282 + 172 + 221)
qumode 6 974 957 (564 + 172 + 221)
qubit 1 517 491 (24 + 210 + 257)
qubit 3 556 539 (72 + 210 + 257)
qubit 5 609 587 (120 + 210 + 257)
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