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New tools from Quantum Technologies: 

Quantum Simulators and Quantum Computers


Quantum Information ideas and measures

Two main questions: 

How to engineer in the lab new Quantum Phases of Matter


How to characterise these new Quantum Phases







What is the Haldane phase? 

Symmetry Protected Topological Phases

Ĥ = + ∑
i

⃗Si
⃗Si+1

Haldane, F. D. M. (1981a), ILL preprint SP81/95, 
arXiv:1612.00076

Gapped Bulk

Degeneracy: Edge modes
{

• Gapped spectrum to next excited state
• Four-fold (nearly) degenerate ground state with OBC
• Protected by a Z2 x Z2 spin symmetry

➔First example of a SPT phase
➔Against all known evidence at the time



Haldane, F. D. M. (1981a), ILL preprint SP81/95, 
arXiv:1612.00076

• Prior heuristic experimental evidence seemed to suggest that isotropic 
(rotationally symmetric) Hamiltonians were always gapless

• “Natural” spin-one crystals were made, and all evidence controversially 
pointed towards an energy gap

CsNiC13 (1985)
Ni(C2H8N2)2NO2(ClO4) (1990)

• Analog simulation in an ultra-cold atom Fermi-Hubbard ladder (2021)

• We are now performing the first digital simulation of Haldane using trapped 
ions

What is the Haldane phase? 

Emerging experimental evidence
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Non-local order parameter.- String order parameter and entanglement length

den Nijs, Rommelse (1989)

Cirac, Martin-Delgado, Popp, Verstraete (2005)

Oα
str = lim|i−j|→∞⟨ ̂Sα

i eiπ∑k=j+1
i+1

̂Sα
k ̂Sα

j ⟩
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Non-local order parameter.- String order parameter
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Simulating the Haldane phase ground state 

Non-local order parameter.- String order parameter

Ĥcluster = − ∑
i

̂σz
i−1 ̂σx

i ̂σz
i+1

[ ̂σz
i−1 ̂σx

i ̂σz
i+1, ̂σz

j−1 ̂σx
j ̂σz

j+1] = 0 ̂σz
i−1 ̂σx

i ̂σz
i+1 |gs⟩ = |gs⟩

Z2 x Z2 symmetry: X̂even = ̂σx
2 ̂σx

4⋯ ̂σx
2N X̂odd = ̂σx

1 ̂σx
3⋯ ̂σx

2N−1

Stabiliser-State

F. Pollmann and A. M. Turner, Phys. Rev. B 86, 125441 (2012)
A. Smith, B. Jobst, A.G. Green, F. Pollmann, PRReseach 4, L022020 (2022)
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2N X̂odd = ̂σx

1 ̂σx
3⋯ ̂σx
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( ̂σz
2N) ( ̂σx

1 ̂σz
2)

g.s.
= X̂odd ( ̂σz

2N−1 ̂σx
2N) ( ̂σz

1)
g.s.

= X̂even

Projective symmetry representation at the boundary: { ̂σx
1 ̂σz

2, ̂σz
1} = 0

Stabiliser-State

F. Pollmann and A. M. Turner, Phys. Rev. B 86, 125441 (2012)
A. Smith, B. Jobst, A.G. Green, F. Pollmann, PRReseach 4, L022020 (2022)



Trapped 40Ca+ ion “qudits”

M. Ringbauer et al., arxiv:2109.06903 (2021)
Y. Chi et al., Nature Communications 13, 1166 (2022)



Trapped 40Ca+ ion “qudits”

Directly simulate non-spin-½  systems in nature by utilising extra levels in ions

M. Ringbauer et al., arxiv:2109.06903 (2021)
Y. Chi et al., Nature Communications 13, 1166 (2022)



Creating the Spin-1 AKLT chain 

The state         is the zero-projection eigenvectors of the operator

40Ca+ energy level encodingAKLT Spin-1 Basis Definition

ĤAKLT = ∑
i

[ ⃗Si
⃗Si+1 +

1
3 ( ⃗Si

⃗Si+1)
2]

Sx = (
0 0 0
0 0 −i
0 i 0 )Sα |β⟩ = iϵαβγ |γ⟩,

|α⟩ Sα

Sx



Sequential Preparation of the AKLT ground state

• The AKLT ground state is a matrix product state →  equivalent to a sequentially 
generated state


• Uncorrelated atoms pass sequentially through a “cavity” and couple to the cavity mode


• Choosing an appropriate coupling unitary will generate the AKLT state

C. Schön, et al., Phys. Rev. Lett. 95, 110503 (2005), 
C. Schön et al., Phys. Rev. A 75, 032311 (2007)
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|α⟩ = ∑
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σs
αβ |s, β⟩



MPS Coupling Gate

� �

s
|α⟩ = ∑

s,β

σs
αβ |s, β⟩

45 local gates (fidelity ~ 0.999)

2 entangling gate (fidelity ~ 0.985)


Fidelity ~ ( 0.99945 * 0.9852 )N

    = {0.86, 0.80, 0.74, 0.69} for N = {2, 3, 4, 5}

|β⟩∑
s

|s⟩ ↦ |α⟩ = ∑
s,β

σs
αβ |s, β⟩

Control-unitary: spin-1/2 unitary controlled by spin-1



Bulk - edge correspondence 

Rabi flops of the 
Fractionalized edge qubit  Rabi flop contrast



Summary and outlook

• Using qutrits, we can directly create the ground state of a spin-1 AKLT chain


• We observe the critical features of an SPT, in particular, spin fractionalisation of the 
spin-1 chain into two qubits on the boundaries


• The AKLT state is a perfect quantum repeater and has interesting properties for one-
way quantum computation


• Looking at ways to explore more complex SPTs, such as higher dimensional spin-1 
lattices using qudits



The Team

I. Arrazola.- PostDoc researcher at IFT-UAM


G. K. Brennen.- Professor at Macquarie University


C. L. Edmunds, M. Meth, R. Blatt, M. Ringbauer.- Qudit group 
at trapped ion experiments in Innsbruck 



The problem:

Consider some Hamiltonian depending on some coupling parameters

H (κ, h) = − ∑
i

Sx
i Sx

i+1 + κ∑
i

Sx
i Sx

i+2 + h∑
i

Sz
i

Objective: design a mathematical tool 


for classifying different phases of matter 
(classification) 


for detecting the phase transitions 
(anomaly detection)



The problem:

Phase transition happens when a “smooth variation” of a Hamiltonian 
as a function of coupling parameters leads to an abrupt “change” of a 
ground state.


Phases of matter are usually classified using so called order 
parameters: e.g. averaged magnetisation is the order parameter for 
transverse field Ising model.


With the general behaviour: ordered phase (order parameter is 
different from zero) and disordered phase (order parameter equals to 
zero). Phase transition at the boundary between phases.


How to classify phases and detect phase transitions of a quantum 
system without tailored “order parameters”? 



Visualisation of the uses of the 
reduced fidelity susceptibility

Possible way-out 
fidelity susceptibility: ⟨ψ (λ) |ψ (λ + v)⟩

untrainable in a many-body 
situation: diagonal dominance, 
orthogonality catastrophe
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Possible way-out 
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The Uhlmann-Jozsa fidelity for density matrices:

F (ρ, σ) = [Tr ( ρ1/2σρ1/2)]
2

and let:
f (λ, v) = F (ρ (λ), ρ (λ + v)) → 1 −

∂2

∂v2
f

v=0

v2

2

we define:

g (λ) = − ∑
i

∂2

∂v2
i

f
v=0

and the gradient field:

Pi (λ) =
∂

∂λi
g (λ)



First results:

In the reduced fidelity susceptibility vector 
field:


Sources are phase transitions and


Sinks are representative ground states for the 
corresponding phase. 

PM

FM
AP

FP

LP

Phase Diagram obtained using 
the reduced fidelity susceptibility 
of the one-dimensional ANNNI 
Model


The plots are given by the angles 
of the vector field for the ANNNI 
model with 50 spins (DMRG)



Order parameter discovery:
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Spin State
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(c)

The order parameter for a given system is not unique; any 
thermodynamic variable that is zero in the un-ordered phase and non-
zero in an adjacent (on the phase diagram), usually ordered phase, is a 
possible choice for an order parameter.
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Grouped Site

Spin State
(a) (b)

(c)

The order parameter for a given system is not unique; any 
thermodynamic variable that is zero in the un-ordered phase and non-
zero in an adjacent (on the phase diagram), usually ordered phase, is a 
possible choice for an order parameter.

min
M

−
1

| I+ | ∑
i∈I+

⟨M⟩2
i +

γ
| I− | ∑

j∈I−

⟨M⟩2
j

Grouped Site

Spin State
(a) (b)

(c)

⇒ min
x∈ℂm2

x†Ax |x |2
2 ≤ 1

quadratically constrained 
quadratic program



Order parameter discovery:

The two-site observable obtained using 
the order parameter discovery framework

Calculations with O(150) sites



FSS for the ANNNI Model

max
h { ∂

∂h
⟨M⟩} = aL1/ν (1 + bL−θ/ν)

Fit critical exponent…
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Summary and outlook

Results: design a mathematical tool 

for detecting the phase transitions (anomaly detection)


We define method for order parameter discovery which 
allows to have a quantitative description of the critical point

for classifying different phases of matter 
(classification)


We use the reduce density fidelity susceptibility for 
the qualitative classification of the different phases
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