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Strong correlations between electrons → exotic materials

High Tc superconductors Single Molecular Magnets

Nitrogenase Cofactor, FeMoco Battery Technology
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Experimental realizations: optical lattices
Numerical simulations: model systems

Atoms (represented as blue spheres) pictured in a
2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting electron system
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⟨i,j⟩,σ

c
†
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σ ∈ ↑, ↓ spin index
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Properties of the TNS/DMRG algorithms

Key aspect of TNS/DMRG: exponential scaling can be reduced to a
polynomial form.

Underlying tensor and matrix algebra can be organized into several
million of independent operations (tasks).

Dense matrix operations are performed in parallel according to the
so-called quantum number decomposed representations (sectors).

Full matrices, denoted as DMRG bond dimension, D, determines the
accuracy of the calculations.

The overall scaling of the DMRG is D3N4 where N stands for the
system size.

The memory requirement is proportional to D2N2.

The iterative diagonalization of the effective Hamiltonian usually
accounting for 85% of the total execution time.

The renormalization step is responsible for 10% of the total
execution time.
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TNS/DMRG provide state-of-the-art results in many fields

H =
∑
ijαβ

T
αβ
ij c

†
iαcjβ +
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2

∑
ijklαβγδ

V
αβγδ
ijkl c

†
iαc

†
jβckγclδ + . . . ,

Tij kinetic and on-mode terms, Vijkl two-particle scatterings

We consider usually lattice models in real space (DMRG)

In quantum chemistry modes are electron orbitals (QC-DMRG)

In UHF QC spin-dependent inetractions (UHF-QCDMRG)

In relativistic quantum chemistry modes are spinors (4c-DMRG)

In nuclear problems modes are proton/neutron orbitals (JDMRG)

In k-space modes are momentum eigenstates (k-DMRG)

For particles in confined potential modes → Hermite polynoms

Major aim: to obtain the desired eigenstates of H.
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Quarter petaflops on a single node ∼ 10000x speedup
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NVIDIA DGX H100 and Grace Hopper GH200: Testing performance up to
∼ 250 TFLOPS in collab with NVIDIA and SandboxAQ, M. van Damme,
A. Menczer, M. Ganahl, J. Hammond, S. Xantheas, ÖL

Combination of our MPI and GPU kernels: full replacement of boost
library, asynchronous IO, multiNode-multiGPU.
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Wigner, PNNL, NVIDIA, SandboxAQ joint press release

www.pnnl.gov/news-media/collaboration-speeds-complex-chemical-modeling
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Our TNS/DMRG code will be used as benchmark
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SC24: NVIDIA TOP500 BoF Accuracy of Emulated FP64
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Collaborations

More than 30 research groups worldwide from condensed matter
physics, quantum chemistry, nuclear physics, quantum information
theory, applied mathematics and computer science

High-Performance Computing Center Stuttgart, Germany

Pacific Northwest National Laboratory (PNNL), USA

National Energy Research Scientific Computing Center (NERSC),
USA

Recently there is also an interest by industrial partners.

NVIDIA, USA

AMD, USA

SandboxAQ, USA (Google startup)

Furukawa Electric Institute of Technology, Japan

Riverlane LTD, UK

Dynaflex LTD, Hungary
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Memory management: Data Dependency Trees

TTCache is a model for virtual memory addressing designed to vastly
reduce redundant IO operations and eliminate memory fragmentation
as well as allocation overhead.

TTCache works by factorizing data into attributes, then
hierarchically mapping such attributes to execution blocks. Execution
is done by traversing a tree-like structure, in which nodes close to
each other depend on largely the same set of attributes
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Strided Batched Matrix Multiplication for Summation

SBMM4S is a batched type matrix multiplication with inherent zero
cost sum reduction. Produces a single result by multiplying an entire
batch of matrices with concatenated vector arrays of interleaved
matrices. Intermediate results of chained matrix multiplications are
reached using strided batched type matrix multiplications with
specific offset values to enable interleaving.

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 a1 a2 a3 a4b1 b2 b3 b4c1 c2 c3 c4

Sequential Vector Placement Interleaved Vector Placement

A summation such as B := B+ α(
∑p

i=1 Li ∗ A ∗ R⊤i ) can be executed
in parallel by first independently calculating the interleaved vectors of
each A ∗ R⊤i , then multiplying concat(L1, ..., Lp) with the matrix
holding all previously calculated vectors.
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Improved partial execution of SBMM4S

The multiplication can to be broken up into multiple SBGEMM
operations. The leading dimensions and stride values are set in a way
that the vectors of the result matrices became interleaved.

The sequence of such vectors can be viewed as a singular horizontally
or vertically very long stripe-like matrix, just as before.

A1 B1 A2 B2 A4 B4* * **A3 B3

SKIPSBGEMM

C11 C12 C13C12 C22 C23C41 C42 C43

LongVector1 LongVector2 LongVector3

VerticalStripeMatrix

SBGEMM

C1 C2 C4

Example for partial SBMM4S

Partial SBMM4S works as a
zero overhead drop-in replace-
ment for both GEMM and regular
SBMM4S:

No auxiliary data

No extra calculations

Results remain monolithic
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Low-latency Self-scheduled threading

Parallel models relying on inter-thread communication might be
ineffective when bombarded with an extreme amount of tiny tasks

Homogeneous threading with imprinted heuristics as guidance leads
to a lightweight, decentralized and communication-free parallel
construct.

Idle Maze-Runner NO

YES

Maze available?

YES

NO

Task Found? TAKE

Found
Tasks

PUTPut Task into
Database

Solve Task

Search Maze

Maze-Runner threads used previously

Contractor threads are self-
organized ultra-lightweight con-
structs:

No external scheduling

No locking

No barriers
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Hash based thread scheduling

Assigning different groups of tasks to different workers can result in
unwanted idle time due to size differences, while flattened task queues
can result in high IO overhead due to decreased spatial locality.

Hashing on the other hand assigns different groups to different
workers whenever possible, but at the same time allows multiple
devices to work within the same group if necessary.
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Performance up to CAS(113,76) dimH = 2.88× 1036)

Performance for the F2 and FeMoco chemical systems for CAS(18,18),
CAS(54,54) and CAS(113,76) orbitals spaces, respectively, as a function of
the DMRG bond dimension on a dual Intel(R) Xeon(R) Gold 5318Y CPU.
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SU2 effective performance

Benchmark results obtained via the SU(2) spin adapted hybrid
CPU-multiGPU DMRG for the F2 molecule for a CAS(18,18) orbital space.
Calculations have been performed on a dual AMD EPYC 7702 CPUs with
2×64 cores compiled with eight NVIDIA A100-SXM4-40GB devices.

1k 4k 8k 12k 16k 20k 24k

D

0

50

100

150

200

250

300

P
e

rf
o

rm
a

n
c
e

 i
n

 T
F

L
O

P
S

20.3k

33.4k

47.1k
55.9k

65.5k

4.8k

10.6k

20.5k 25.5k

47.1k
F

2
: CAS(18,18)

U(1) SU(2) U(1)
eff SU(2)

new

U(1)
eff

new
SU(2)

new

80GB
FP64 FP64+TCU

Andor Menczer (ELTE) TNS Algorithms on AI accelerators 2024.11.22. 17 / 19



Power consumption → Green DMRG

The power consumption of the TNS calculations are becoming one of
the most important question due to high energy demands and costs.

The thermal design power (TDP) for 2 × Intel(R) Xeon Gold 5318Y
CPU is 2× 165 Watts → 2.5 TFLOPS would lead to
≈ 7.5 GFLOPS/Watt.

For an NVIDIA A100-PCIE-40GB device the TDP is 250 Watts.

For our 8 card accelerated hybrid algorithm with 110 TFLOPS
performance results in ≈ 47.2 GFLOPS/Watt.

For a given calculation the cost of the energy demand arising from
the processors can be reduced to 1/6 of the original consumption.

The energy consumption of the GPU devices fluctuates significantly,
thus even a better ratio can be obtained.
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Ongoing and future work

Published: GPU accelerated DMRG as shown previously, featuring
Maze-Runner, TTcache and SBMM4S

Published: Collaboration with NVIDIA, accelerating the simulation
of strongly correlated systems using state-of-the-art supercomputing
hardware known as DGX-H100. Other prototype super-hardware
might also be tested.

Published: Matrix dimensions can be further decreased by exploiting
SU(2) symmetries. This leads to higher accuracy at the same
dimensions or similar accuracy at much lower dimensions. Improved
memory management, thread scheduling and support for a more
general SBMM4S with partial execution.

Published: GPU accelerated simulations of quantum lattices.

In-progress: Unbounded scalability through multi-node execution
using MPI and InfiniBand. Target: 1 PETAFLOPS.

End Goal: Accurate modelling of strongly correlated subatomic
particles at 1+ EXAFLOPS.
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