

Budapesti University of Technology and Economics Faculty of Electrical Engineering and Informatics

Quantum Communication Research at the Budapest University of Technology and Economics

Dr. Eszter Udvary vice-dean for international affairs

Quantum Technologies

- It is based on the laws of quantum mechanics
 - Wave particle duality
 - Uncertainty principle
 - The impossibility of quantum cloning
 - Quantum entanglement

Computing

- Quantum states of matter are used to store and compute information
- Fast quantum algorithms
- Modeling, code breaking

Communication

- It uses the principles of quantum mechanics to transfer and communicate information
- Secure data transfer
- Quantum internet

Sensing

- It senses small changes in the electromagnetic field
- Good sensitivity
- Positioning, navigation, lidar and radar

Quantum Communication

- Uses the principles of quantum mechanics to create unbreakable, extremely secure communication channels.
 - Quantum Key Distribution (QKD): create a shared key between two parties without the third party knowing anything about that key, even if the third party intercepts all communications between the other two parties.
 - Fiber-based, point-to-point QKD links are available
 - Quantum Random Number Generation (QRNG): Perfectly random number sequences based on quantum mechanical phenomena
 - QRNG devices (chips!) are available
 - Quantum internet
 - Under research

BME: Leader of the quantum communications in Hungary

- Who are we?
 - Department of Networked Systems and Services @ Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics
- Interest:
 - Quantum information theory, quantum internet
 - Quantum optimization
 - Quantum Key Distribution, QKD (fiber and free space)
 - Quantum Random Number Generation, QRNG
 - Beyond QKD
 - (Post quantum crypto)

Quantum Communication Research Group

Academia-Industry Matching Event (AIME24)

Fibre-based

- Own-developed systems
 - DV-QKD
 - CV-QKD
- QKD device qualifying measurement
- Integration of quantum and classical communication networks
- Own-developed QRNG
- New bit generation methods

Free space and space

- Optical background radiation measurement
- Quantum Communication Capable
 Optical Ground Station
- Own-developed Entanglement-based free-space QKD
- FSO synchronization channel
- Satellite systems

Quantum Internet

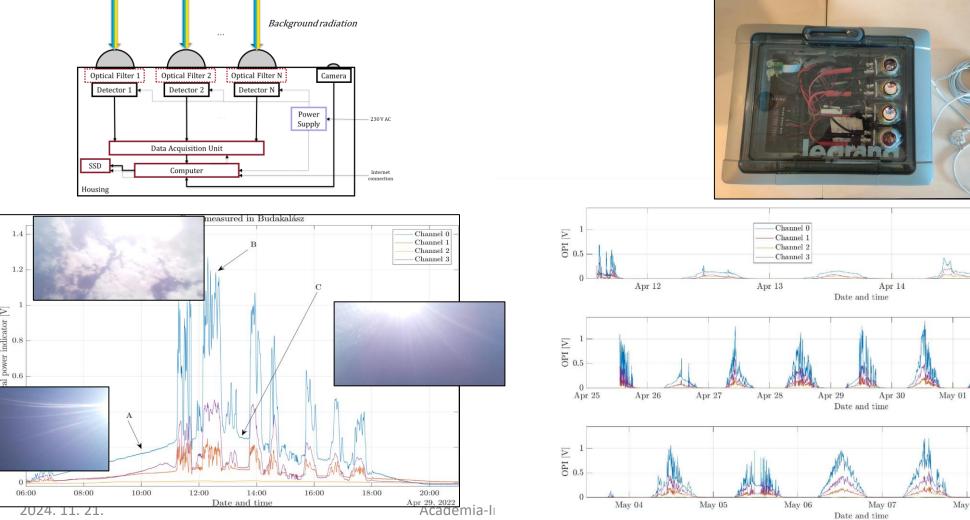
- Quantum repeaters
- Quantum memory

Fiber-based

- BB84 QKD demonstration with own developed system (in cooperation with Ericsson Hungary)
- CV QKD long distance demonstration with own developed system as part of the national QKD network (in cooperation with Hungarian Telekom and Wigner Research Centre for Physics)
- Quantum channels in classical networks: QuantumGigalink (in cooperation with Hungarian Telekom)
- Own-developed Optical Quantum Random Number Generator
- Entanglement-based QKD system
- Beyond QKD: Developing entanglement-based medium access control; focusing on quantum internet
- Participation in the European Quantum Communication Infrastructure (QCIHungary)

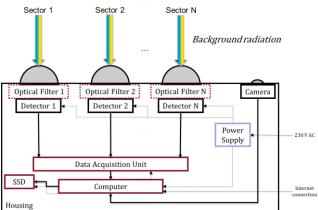
Free space and space

- Entanglement-based free-space QKD over the River Danube (in cooperation with Vodafone Hungary)
- Participating in two ESA projects (QuStation, Certain) (in cooperation with ATL, Relcom)
- Investigating the possibilities for CubeSat-based QKD
- Investigating the possibilities for quantum-capable optical ground stations
- Theoretical work on future satellite-based quantum communication systems



Some example for industrial cooperation

QuStation, European Space Agency



- QuStation: Quantum Communications Capable Optical Ground Stations in Hungary
- Leader: ATL ltd, partner: BME
- Feasibility Study: the overview of the optical ground station technologies, a market survey and measurement of optical background radiation
- 2021-2022

QuStation

11

Apr 15Apr 162022 L2 // Budakalász

May 03

May 09

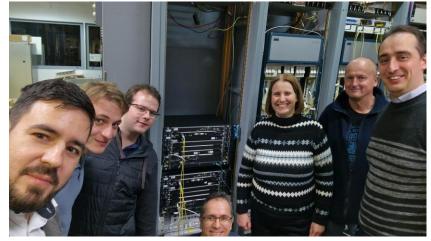
May 04

May 10

2022

2022

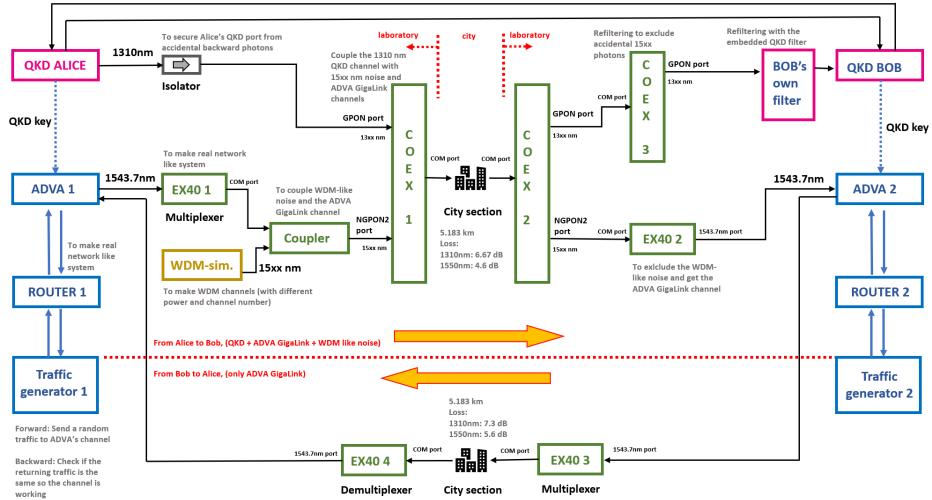
L3 // Csobánka

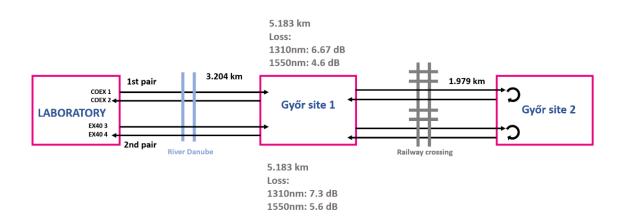

May 02

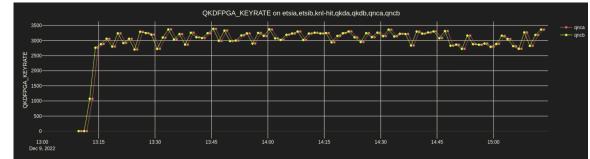
May 08

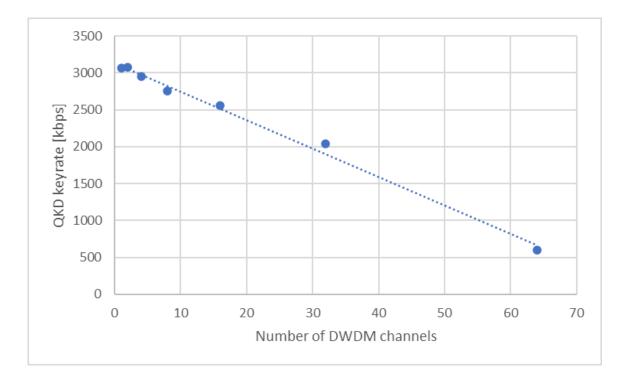
L1 // Budapest

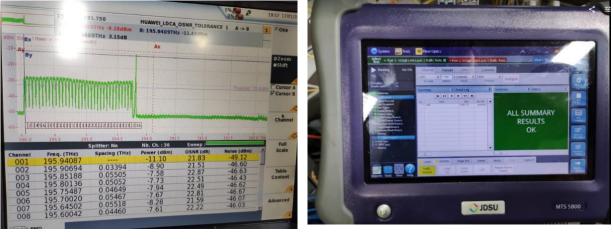
QuantumGigalink Telekom Telekom Telekom Telekom


- OpenQKD EU project, QuantumGigalink, 2023
- Cooperation with Hungarian Telecom
- IDQ QKD device pair:
 - Cerberis 3, time-bin qubits, COW protocol, 1310nm
- Experimental work
 - Metropolitan network, Hybrid system
 - QKD channel integration classical optical networks
 - Quantum channel @1310nm: Higher optical attenuation, limited link length
 - High-speed DWDM channels @1550nm
 - 65 DWDM channels; 1 encrypted channel using quantum keys


QuantumGigalink: Laboratory setup




QKD service channels (connected inside the lab)



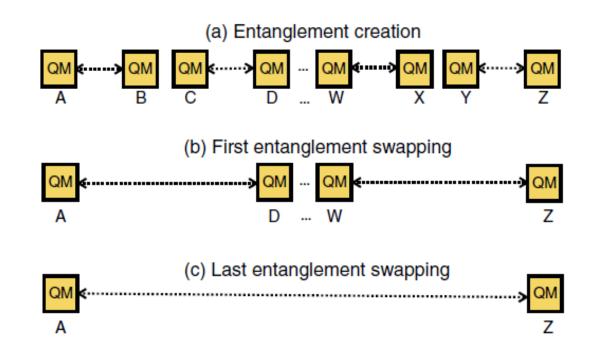
QuantumGigalink: results

Modeling, analysis, planning, implementation and operation support of QKD networks

- Quantum Network
- 2024-2026
- Goal
 - Development of network planning software suitable for supporting QKD channels
 - Beyond the point-to-point QKD connections, a solution, procedure, and planning system for protecting L1, L2, and L3 level channels between network nodes, as well as the process control system, must be developed.

QuantumNetwork

- Literature overview
- Planning Software development
- Operation Support system development
- Testbed
- Laboratory and live network test



Future research

Quantum Internet - Entanglement swapping

- QKD is only a short term goal, the real challenge is a global quantum network which connects quantum computers to share quantum information among them.
- No-cloning => Repeated teleportation
- Entanglement purification/destillation is needed to eliminate the "noise" introduced by the process i.e. to regenerate perfect entangled pairs between the endpoints.
- Problem: quantum memories are required!

Source: Na Chen et al, End-to-end entanglement establishment with lower latency in quantum networks, Quantum Information Processing 23(2)

3 generations of Qrepeaters

• 1st

- Today's quantum processors are very error prone. To make up for this, 1st generation repeaters will use a process called entanglement distillation.
- The idea behind entanglement distillation is that you can "distill" a high quality entanglement from many copies of low quality entanglement.
- it's communication rate is highly limited
- 2nd
 - As error rates improve, quantum repeaters can transition from relying on entanglement distillation to quantum error correction to handle operation errors.
- 3rd
 - once quantum devices have improved enough, quantum error correction will be able to be used to handle both loss and operation errors.
 - This will significantly improve the rate of communication and unlock more applications

Summary

- Quantum communication research group at BME
- Active industrial cooperation
 - ATL
 - Magyar Telekom
 - Netvisor
- Future research direction

Thank you for your kind attention