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Philosophy

Our causality notion is based on time.
We observe, recognize time through irreversibility.

Irreversibility is created by randomness.

In case of perfect observation of a deterministic system,
without intervention it is impossible to find the direction of
driving the direction of causation. In case of continuous space
there is no perfect observation at all.
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Survival needs some kind of inteligence,
first of all detection of causal relations.
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We observe two time series: X = {xi} ,Y = {yi} that is
observation of two dynamic systems X ,Y

X and Y are correlated

X ?→ Y

X causes (drives) Y-t?
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The question

Or is there a common driver Z?

X
↗

Z
↘
Y

We need decision, but we can’t do intervention, only
observation, Granger for SDS, Sugihara for DDS
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The unified theory

Fact
The unified theory handles deterministic and stochastic
systems as well.



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

1 How it works?
2 We find a law, a principle: If A→ B a lamp flips to
green, but not for B → A

We find asymmetry.
3 We should show that green lamp implies if and only if
A→ B.

4 We can separate cases: independence, uni- directional
driving, mutual driving, there is a common driver (hidden
common cause)

5 We develop a method to quantify the probability that the
lamp is green based on data.
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Temporal causal discovery

Stat method about green lamp
- detect,
- test,

- separate cases:
- visualize,
- test,
- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,
- test,
- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,

- test,
- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,
- test,

- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,
- test,
- use Bayesian inference

- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,
- test,
- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Temporal causal discovery

Stat method about green lamp
- detect,
- test,
- separate cases:

- visualize,
- test,
- use Bayesian inference
- other tricky method...?



Introduction Topological causality The unified theory Demonstration

Dimension of atractors of dynamic systems

related fork from us

Dr. Stippinger M., Dr. Zlatniczki Á, Dr. Benkő Zs., Dr.
Stippinger M.,
Dr. Dr. Med. Fabó D., Dr. Dr. Med. Halász P., Dr. Dr.
Med. Erőss L.,
Dr. Somogyvári Z, T.A.
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The unified theory (Jakovác, T.)

But!
The atractor of a DS can be fractal, the dimension can be non
integer, diffi cult to estimate.

The time delay embedding of a stochastic system fills up the
space in any dimension.
The unified theory cures that problems.
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Deterministic dynamic systems

dox

dtox
x = f (x)

doy

dtoy
y = g(x, y)

e.g.

f (x) = a0 + a1x + a2
dx
dt
+ ...+ aoX

doX−1x
dtoX−1

.

We assume all nice things.
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Driving and observation

observation with τ time steps

xn+1 = f (X nn−oX+1)

yn+1 = g(X nn−oX+1,Y
n
n−oY+1)

Ac = Acb = (Ac ,Ac−τ ,Ac−2τ ...Ab)
T embedding.
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Stochastic systems

Stochastic dynamic systems

xn+1 = f (Xn, ξn+1)

yn+1 = g(Xn,Yn, ηn+1)

where ξ, η i.i.d. independent from the whole past(
X n−oX−10 ,Y n−oY−1

0

)
and from each other.
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Rank and degrees of freedom

When a DS is well defined (stoch.. or det.) ?

xn+1 = f (Xn, ξn+1) =: fn(Xn)

xox+1 = f
(
AoX1 , ξox+1

)
= f1 (AoX )

xn+1 = fn (Xn) = .... = fn ◦ fn−1 ◦ ... ◦ f1(Aox1 ) = Fn(AoX ).

X is well defined if f is known and the initial vector values are
given

X oX1 = AoX1

dfX = oX



Introduction Topological causality The unified theory Demonstration

Rank and degrees of freedom

When a DS is well defined (stoch.. or det.) ?

xn+1 = f (Xn, ξn+1) =: fn(Xn)

xox+1 = f
(
AoX1 , ξox+1

)
= f1 (AoX )

xn+1 = fn (Xn) = .... = fn ◦ fn−1 ◦ ... ◦ f1(Aox1 ) = Fn(AoX ).

X is well defined if f is known and the initial vector values are
given X oX1 = AoX1

dfX = oX



Introduction Topological causality The unified theory Demonstration

Rank and degrees of freedom

When a DS is well defined (stoch.. or det.) ?

xn+1 = f (Xn, ξn+1) =: fn(Xn)

xox+1 = f
(
AoX1 , ξox+1

)
= f1 (AoX )

xn+1 = fn (Xn) = .... = fn ◦ fn−1 ◦ ... ◦ f1(Aox1 ) = Fn(AoX ).

X is well defined if f is known and the initial vector values are
given X oX1 = AoX1

dfX = oX



Introduction Topological causality The unified theory Demonstration

Rank and degrees of freedom

When a DS is well defined (stoch.. or det.) ?

xn+1 = f (Xn, ξn+1) =: fn(Xn)

xox+1 = f
(
AoX1 , ξox+1

)
= f1 (AoX )

xn+1 = fn (Xn) = .... = fn ◦ fn−1 ◦ ... ◦ f1(Aox1 ) = Fn(AoX ).

X is well defined if f is known and the initial vector values are
given X oX1 = AoX1

dfX = oX



Introduction Topological causality The unified theory Demonstration

Rank and degrees of freedom

And the driven?

We need Y oY
1 = BoY1 but X oX1 = AoX1 as well.

yn+1 = gn (Xn,Yn)

= gn ◦ gn−1 ◦ ... ◦ g(Fn(AoX ),BoY ) = Gn (Fn(AoX ),BoY )

Lemma
The degrees if freedom of the driven is equal to the sum of
ranks:

dfy = oX + oY
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Detection

Task: let us determine the df of the system.

How can we test? Let it be DDS or SDS

X k−1k−ox = (xk−1, ....xk−ox )
T 7→ xk

fix ox number of values of X k−1k−ox that determines the
distribution, the evolution of the system, (DSD and SDS as
well) (picture as recursion ). Values past to the fixed
elements do not influence the evolution.

Markov property!
Even in the case of DDS! 1
Similarly for Y dfY = oX + oY number of values has to be set.
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Result

Summary (but not the end)

max {dfX , dfY } ≤ df(X ,Y ) ≤ dfX + dfY
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Comparison

WGC
SDS

CCM
DDS

DC
DDAS

df
both

@z, x → y X X X X X
@z, x ← y X X X X X
@z, x ←→ y X X X X X
∃z {x = y} ←→ ... X X X
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Toy example

xn = αQxxn−1 + gzn−1 + βξx ,n
yn = αQyyn−1 + gzn−1 + βξy ,n
zn = αQzzn−1 + βξz ,n

x, y , z ∈ R2 we fix pairs!, Q.is a rotation matrix, α < 1,
dfx = dfy = 2× 2, dfz = 2

z drives x and y and there is no
driving between them.
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Let us fix x

less stochastic more stochastic

remember, we set pairs of x!
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less stochastic more stochastic

remember, we set pairs of x!
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Introduction Topological causality The unified theory Demonstration

Chicken or egg?
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Chicken or egg?

So we find assymmetry, EGG → Chicken
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Thanks
Q&A?


