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Abstract

Abstract: We demonstrate that the finite-time-path field theory (FTPFT), is adequate
tool for the calculation of kaon oscillation and decay. We apply a theory with mass-mixing
Lagrangian by using the Gell-Mann - Pais like mixing matrix. The Dyson-Schwinger
equations contribute to a pair K° and K° an another pair of CP symmetric K¢ < K;
kaons with different masses. This leads to K” and K oscillations. To the mixing matrix
we add self-energies connected to 27 and 37 decays of K° and K* kaons,respectively. We
calculate single particle distribution of my, 7., and 7_ as a function of time, as it emerges
from K® and K decay to 2r.The pions decay further as my — 27, or 71 (=) = p,v. These
pion decays reflects in the time dependence of pion distribution. We don'’t need artificial
tools like non-hermiticity of the hamiltonian hypotesis, neither the on-shell hypotesis.
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Kaon Decay Parameters

Mean lifetime for

7. = (1.23800.0020)105s

s = (8.9540.004)107 s = .136 x 1012hMeV !
1 = (5.1160.021)10~%s = .778 x 10"hMeV !
72 = 2.603 x 107%s

=0.83 x 10715

l/Tg = 7.35 x 10~ uftireV

/7, =1.29 x 107 MeV

mg, = 497.611MeV .

A =mp —mg = 3.484(6) x 107 2MeV |

A hierarchy

myg >> 1/Tg\/(MK&) >> /g >> 1/tg > A >> 1)1, >> 1/11 .
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Gell-Mann-Pais theory
Murray Gell-Mann and Abraham Pais :
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To get decays and CP-violation add complex valued widths to A
Direct and indirect CP-violation (¢ and &)



Serious drawbecks:

1. it requires hamiltonian to be non-hermitian, to deal with CP nonconservation.

2. The model uses wave functions describing partcles on mass-shell.

Interest for non-hermitian hamiltonian . Our approach does not require non-hermiticity.



Finite Time path and Two Point Functions

Thermodyname Thermal Field Theory
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Evolution of the Product of Two One-Point Operators
in Heisenberg representation
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—< Py E-z'hh‘.!-.:_-O?m:]ﬁ—ihﬂtz{,_;ihfingl{{}:]E—aihﬂ.!L |’:':.EH ~

—< | U (0, t5)Oo(0VU (£, )01 (VU (t1, 0) |0y >

Example Oy (ta)Oq(t1) = a™ (ta)a(ty).

= number operator when ty — #;

At

>

_.l
[ 2




Perturbation Expansion

Perturbation expansion is performed by expanding evolution operator U(fq,fs) In powers
of Hy(t). If t belongs to path 2 it acquires extra factor (—1) for each power of Hy, because of
time-reversed path.

The extended Wick theorem (see Fetter-Walecka [?] for details) then transforms individ-
nal terms into the products of two-pomnt functions. the mmportant difference 1s that the not-
contracted a” and a operators, act on mmtial density matrix and produce additional terms
depending on 1mitial single-particle distribution functions. Two pont functions take matrix
form e.g. Di; 1s obtained by both points taken from path 1, while for D5 and Dy one pomnt 1s
from path 1 and the other point 18 from path 2. and finally for Day both points are from path
2 (For better transparency, in further text, we shall replace index 5 by _).



Finite Time Path and Wigner transforms

F(z,y), 0<xzo,y <t

F {’ -:] _ 2o d dE. —i{sum—ﬁf”]lj:'(..
(o d) = [, dso [d'se r,y)
—2Xpg

T+
2

X =

, 8 =& — 1,

Shift to oo
If F..(py, p) exists then

Fx,(po.p) = f_xdpfnﬁtu(ﬁnzpﬁ}Fm[PHﬂ

A | sin (2Xo(po — pp , ; ;
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Bare Propagators (1 for kaons , 2 for antikaons)

GKR Too 1V REAV P, TTL) = !
Goc.1(2).004) (P, ™) P2 — m2 + Dipge
Goo1 Kk {p._ m) = Gﬂu{:ﬁ:{'}?] — G::-:,I,H:.-i{?]
— eré[pg - -r'n-g}{l + 2n(po, p))

n(po, ) = O(po)ni(p) + O(—po)na(—p)
| = 2 Y )

+ w
CT,::-: Li.ra)(p) = —{[1 + Eﬁl{wp]]p{]% -
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1 o Po— W
+ [1 + 2ng(wy)] % - G oo 1.R(A) (P, ™)
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Feynman propagator
n1(wp) 1s imtial kaon distribution function,

l 1
Grip) = E[Gml-ff{p ) ng(w,) 18 mitial antikaon distribution function

+ G f:.:_- 1, ‘{{Pj' ::-: 1.K, nl_ng_[l'[?j]



Convolution Product of two-point functions
C=AxBeClr,y) = ﬂ a’.zuf P2 A(z, 2)B(zy)

1 I-E—:'.Yu[pm —po2+ie)

_I_
Cxo (po. 7) = f dpordpus P, (po, 221 P%2)

2 2T po1 — Poo + i€ Am(mleﬁﬁmtpﬂieﬂ.

Definition of the retarded (advanced) functions: (1) the function of py is analytic above
(below) the real axis, (2) the function goes to zero as |py| approaches mfinity in the upper
(lower) semiplane. The choice above (below) and upper (lower) refers to R (A) components .

Under the assumption that A or B satisfies (1) and (2) (A as advanced or B as retarded)
we obtain

Cxo(po.p) = f dpoPxo(Po, po) Ase (Pos P) Bao (o, P)-

Coo(po,P) = Aco(Pp: P)BoolPp: P)-



Vertex Function

1

FORBIDDEN NQT CONSERVING
NQRMAL ENERGY

lq

The 8%(%; Aii) -3-momentum conserved
Energy integrand (all propagators retarded)

i exp[~it(Xi—1 0 P0i — Ljens1i Pog)] — 1 [

El = —
Qﬂzgzimp[]s E;PD}]‘H-E lnn_i' —n+ H[F{]a_'ﬂz ”P[]JHPQJ _UUE _ifp[]_rj

1 - Incoming, o - outgomng propagator



A) The times of the second end of all propagators are below the vertex time. Contribution
of vertex 1s cancelled

B) At least one time of the end of the propagator 1s below the vertex time. The integral
over this propagators energy gives 1.

In the renormalized theory the regularization does not spoil this conclusion.

C)The times of the second end of all propagators are below the vertex time. The integral
can capture singularities of propagators. Energy 1s not conserved.

Spontaneous regularization of the energy not conserving vertex.

L f[ dpojexp|—1H(X i1 Poi — LjensriPog)] — 1
Eﬁ{zizlrﬂ. Pﬂj _ ijzﬂ-l-l,I FDJ}

The subtracted constant can be mtegrated out.

The above recipe does not apply to the vertex with both ends of the propagator attached
to 1t. These vertices do not conserve energy. Instead they are defined as an mtegral in which
the energy 1s smeared.

The exponential time dependence "takes care” of energy - time uncertaimty relations.



The Dyson-Schwinger equations -General
_E]R:DR—F“E{DR*ER#ﬁﬁR

-E]A:DA+?:DA*EA*-E]A
_E]H:D}{+'1'[DH*ZA*§A+DR*EH*ﬁ'A—FDR*ER*ﬁA]
ZR:ZEE

n—0

k=) Tk
n=1

where *-symbol 1s convolution product.
Y9 - multiplies algebraically. possible partial resummation of D-S equarion
2% = R+l at the pole of Dy, correction to MASS and LIFE TIME enters the propagator.
This 1s certam SHIFT of PARADIGMA: spectrum of resummed propagators are not deter-
mined by ¥r as in S-matrix formalism but by 2%,
Already noticed m QCD
constituent quarks vs. current quarks
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Particle Number as an Average of Equal Time Limit of Gy
< Ny(t) >= (2n)*dN [ (dzd*p),

After the time £, the number of kaons (antikaon) is expressed through the AVERAGE of

EQUAL-TIME LIMITS (AETL) of the resummed Keldysh component G, , i of the Wigner
transform of kaon propagator taken from above (4 > 0) and from below (§ < 0):

1+ 51_..::( Jn"'rf{':',ﬂ{t} } + 52_.&( Jn"'rﬁ":',ﬂ(t} }

Wp o . __—ippd
S 2 [u-!a:lﬂu_l_ﬂ;lh-lﬂu] fdpuf* Caardp),

where § = sp; — spe and t = Xy = (sp; + sp0)/2.

AVERAGE - owing to the complex poles of Gg

the particle number can be known only approximately

other defimtions of a particle number in the literature. more or less equivalent to our.
Our definition of particle number has some good properties :

1. It reproduces correctly the lowest order contribution (from §g).

2. for rising t 1t mildly approachess S-matrix theory results (e.g.for Compton scattering).



2.1 Lagrangian and Self-Energies

The Lagrangian consists of five important pieces:

1. Free Lagrangian Ly describes kaons K" and K" as free stable particles of the mass myo.

2. mass mixing Lagrangian (2.1), which mixes CP = 1 (Ks) and CP = —1 (K}) kaon
states into the observed K" and K° kaons.

3. Couplings K + 37 and other conphngs of K, which canse 37 decay and other decays
which are associated to CP = —1 state K. They generate self-energy Xp piay = X1 pia).

4. Couplings Kg <+ 2m and other couplings of Kg. which cause 27 decay and other decays
which are associated to CP = 1 state Kg. They generate self-energy Y pi4) = Xo p(a)-

5. Cp violating Lagrangian, which causes K to decay mto 2. to this term, three selfen-
ergles are assoclated:

self-energy E;ﬁ p(4) Which describes the process Ky, — 21 — K

hybrid selfenergy Y, k., Ei_ r(4) Which 1s associated to precesses where Eiﬂ__ R(4) I which
first process 1s CP violating, while the second one 27 — K 18 CP conserving

hybrid selfenergy Efl_ pay» Which describes the reversed process Kg — 2 — K.



f,ll: ‘} EG{I‘}_I_ETHIII: ] £HLH3W[ ] £H5H2W[I]
£O(x) Z{:ﬁ' U, ) () (040, Zw*

L™ (z) = ler ) U MU ;U 5(z)

1
UHE,HD — E‘UE — UHS,F:D — UHL~HI} — _UHL-.E—D

J?irfi_j — ﬁf_jﬂi] ?]j — ].._ 2

/A
M= a)

Where U, i 1s 2 x 2 matrix analogous to PMNS-matrix. Here, o 1s index for equal mass (my)
kaons-a = 1 forKy and o = 2 for Kj.and i is index for CP eigenstate kaons i = 1 is choosen for

Ky, while 1 = 2 for Kg.



Dyson-Schwinger Equations and Solutions

The dynamics of kaon oscillation, decay, and CP wviolation 18 now determined by Dyson-
Schwinger equations (DSE) satisfied by the Wigner transforms of bare and resummed kaon

propagators: )
In DSE there 1s Mp(4) which 1s natrix M extended through retarded or advanced self-energies

2 4
A1 + Xi00,R(4) T L 1,R(A) Y 12.R(4) )

ﬂ-:lr W RIA) = (
el Efm,?l,ﬂ{:&j Ag + Yioo,2 R(A)

the self-energies X% are so small that they should be taken into account only linearly.

The self-energy for DSE 1s
E-:-u,_ﬂ,-:r,H{Aj — Z L:;,-i*ﬁ'{x,ij,ﬁ[.{l[p] cht,i

The Dyson-Schwinger equations for “oscillating” kaons are

Ggnr = Garogy +1iGgr* Lgar * GagR
Ggna=Gpgadgn+iGagp*Xgaa*xGana
G.'iﬁ',f{ — Gﬂ,f{ ﬁfr,-q —+ ?'-[G..iﬁ' * E..ﬂ__.::__H * Gﬂ,n,f{

+Gs i *Xaaa*Gana+Gan*Esar*Ganal



The formal solution 1s

Conr =Y Usi[l — iSrGr] ™' GrUy,

Gona ==Y Us,Gall —iXaGa]"'Uy,

Gonx = Gankalg + Gk com
Gank.alg = — Y UsiUniGi.all — iiﬁ,.—aﬂ.—a]_l
i
+3 U5 Uni[l — i3 rGR| "Gk i
i
L;"ﬁ,mf‘f conp — & Z U.;,iU??'iU:;J Uﬁj

1 —i%; gGR| ' [Gr.r* EjaGa — GrEig * Gra][l —i%;4Ga] "






Oscillating Kaons - Singularities of the Resummed élgjﬂ_,__ R

To proceed further we search for the singularities of éi1 r(po) -
The symmetries of the self-energies are imortant

iH,H{_FD-.ﬁ — _i;{_H(Pﬂzﬁ}a iﬂ'(—j}ﬂ,ﬁj — i*H{PDﬂ

POLE APPROX.: REPLACE Ei_ z(po) by a constant ¥; r(po) taken at the py = fwy,.
Define ELH( Twp) = R; F I; dictated by the symmetry, negative [; violates causality.

The approximation is valid in vicinity of the corresponding zero of G .

The equation: p; - wi —~Ri+iT; = 0 with w, = (p* + m*)"”, poses two solutions py 19 =
tw! +R; —iL]"* but only one (with + sign) represents the pole near +4j, the otner is near

—u, where imagmnary part of Et n(pp) has opposite sign, thus it 1s not the pole. The pole near
—u, 15 obtamed from the equation contammg —iZ;.



R; T, i
Lls A FE.-}L-E[U.JF_I__}_E- : _A:E-'.'.-l..-'-g_ L
2wy, 2wy W

Near the poles the propagator is approximated as:

- —
G-HH —, 'H—M'A.‘{:{M
’ Dz, (po — wiy, +1€) P =i F




The Propagator of Decayng Pions

Pion propagator with self-energy contamning the mformation about pion interactions satisfies
Dyson-Schwinger equations

fh,ﬂ =Dir+ 1D p* LR * }jz,R

f)f,_q = Dia+iDip* 2 * EH}LA

-'rj.i!,ff =Dig +i[Dip* X g * ﬁl,h’
+Dgpeo* X g * f}f,_q + Dy p* X g * ﬁz,_q]

The self-energies ¥ p(q) and ¥ 4(q) are complicated analytic functions, mostly unknown.
We shall treat them in analogy with the kaon self-energy X; p(p). The symmetries of the
self-energies Y p4)(q) and Xy g 4)(q) are

Yi.x.r(—|pol,p) = —EEH.RUPDL'@ = ZE;{,A(—WGLE") = —Yx.a(|pol, P),

Y1.r(=[pol, p) = X} g(|pol, P) = X} 4(—|pol, ) = Zi,a(|pol, P)



The formal solution with ¥; R(4) Teplaced by Ez () 1S

Dip=[1—iDygE) 5| "' D1 g = Dy g[l — iS%Dy g] ™
Dia=[1—iDya%} )" Dia = Dyall — i Dia] ™,

ﬁ}z,ﬁ: = —Diga(l— iEE_,qDLA)_I + (1 — E:DREER)_IDE,H,R
+i(1 —iDrY%) ' [Dig * Lk * Dia — DI,REER * Di i A
+Dyc.p * X 4Dyl (1 — iS4 Dya)

The self-energy EE RA) multiphes the propagators as an algebraic function and we can
perform partial resummation of Dyson-Schwinger series which mvolve 1t. As we don't know
the analytic form of X (qo), we rely on the expected properties: vanishing at large |go| and
hehaviour near the poles of the bare propagator Q10 = W Therefore

EER(:IZL‘JI,Q) — R{':"-"E,q) + I(L‘-"I,qj

with the mterpretation related to mass shift and the decaty rate.









Wi .p = }kg[w;‘:p + R{wg’q) — i)\lf({ﬁt?q)}lfgj A= +1

R(wyg) . I(wig)
Wiy R Ay + —— — i
QL.L?LP; QLLFLP

where we have assumed inequalities my >> |R(wi,)|, [L(wig)l-

Notice that we had obtaned, taken naively, four poles. But, only two of them are situated
in the vicinity of bare propagator poles. The other two correspond to forbided extrapolations
of E?z{_q}v (i.e. from wy, basin of solutions to —w, basin). These false solutions woud violate the
causality (wrong sign of imaginary part). This is very similar to the case of partial resummation
of Dyson-Schwinger equations for kaons. We reparametrize the above poles in a more " famihar”
way (with self-evident translation)

':'Uﬂf,l,g,p — )‘*f [ﬁg + (ﬂlj i 'i/\”]-_‘”g]lfgr /\” — ::1:

iyl 9 =) 2 2
Wi p ™~ }‘EME,}'} — —ME . Wi =p + m; — ]‘_1!
P

The resummed pion propagators in the vicinity of the poles of bare propagators are

—1

2wy (Do — Wi + 1€

[1—iD rY)R)] ' Dir =~ X [P0 — win,p| << wip



Number of Kaons as a Function of Time

The propagator (3.21) carries the information, which, after the equal time limit, gives the
number and momentum-distribution of both types of kaons measured at the time t. The kaon
(antikaon) number 1s defined as

< Nj(t) >= (2r)*dN /(d*zd’p),

After the time f, the number of kaons (antikaon) is expressed through the average of equal-
time limits (AETL) of the resummed Keldysh component Gz, x (3 = a) of the Wigner trans-
form of kaon propagator taken from above (4 > 0) and from below (§ < 0):

L+ 8, Nio g(t) ) +05( Ngos(t))

2T [ ﬂ{]élﬂﬂ + D}lqﬁ]_:-l—]}[l] Po€ ﬂ:':'f:fi:t[p) 3

where 0 = sp; — sg and t = (sq; + 509 /2.
As we do not know the true eigenvectors of the full hamiltonian, the particle number can
be known only approximately



Kaon Antikaon Oscillation

[nitial Kaon stream: t =0  ny(wy), mno(w,) =0,
Kaon number; a=p§=1,

. _Eﬁllf'l " _ 2mgal'a _m-ll_']_+mgl'gt m2—m?2
Ni. (t) = RexlUPP) o= oy e 2e wp cos —5—=21
fi[}.( ) 1 [ T + Yoy ]
Antikaon number a=/7=2.
. . _Eml]._'l _Emzrz t _m]_l_'j-l-mzl"z t E_ E
Ng, (t) = ””‘*Ellﬂ’ﬂ e o Moo M 9e7™ o Meos ——=1]
wp

At rest w, = M =~ my = my

N, (t) = ZetlBB [0t 4 =202t 4 9e—(Mitl2)t cog A

f'\'rﬁr[}(t) _ n.:¢+[.;1|33'|:33j [E—Erlt 1 E—EFEE . QE—{Fj-l—FE}t COS ﬂt]

[n the absence of CP violation, there is strict symmetry between K and K decays.



Kaon Decays and CP violation

For inclusion of ETQ and E; one has to sum the D-S for retarded propagator:

Gamp = Z Z U3 Uil — i RG] 'Gr
U 5 Up1[1 — i%1 rGR] T GriXis g[l — i¥o rGR] ' Gr
+U% Uyo[l — i%9 pGR| ' Gri¥3, g[l — iX1,rGR] ' Gr
Gopa = Z Z Us iUpill — i 4G )G
+US Upoll — 151 4G 4] G AiE]y 4[1 — i8p 4G a] 'G

+ U3 Uy 1[1 — 189 4G 4] ' G413, 4[1 — iX1 4G 4] 'G 4
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Our calculation method

There are contributions with four and others with five singular propagators

four energy integrals dqmdq;fﬁf{”d‘g*,

representing two external pion energies, one kaon energy and one "mass-shell” pion energy

dlg* = dE}, Ef =mi +|q*

The first three integrations should, each, pick-up some singularity, otherwise the whole
contribution vanishes.

The [;°d|q] integral consists of the pole contribution and principal value integral.

The principal value integral shoud be ignored.




In doing so we are led by three types of arguments:

1. the total contribution should be real, and we are led by an analogy with S-matrix
calculation of imaginary part of some diagram and the corresponding Cutkosky rules.

2. In the close vicinity of singularity the contributions from lower values of |g] and the
contributions from higher values of |g]cancel.

3. Finally, we know the value of the self-energy only in a single point, so we couldn’t do
principal value integral, anyway.

The calculation is simplified by choosing the kaon rest frame n(f,p) = 6*(7)d3. If not all
four integrations catch the singularity the contribution will be ignored. |

Among those terms, only terms with the convolution in G will describe oscillations.



Large The Contribution from Kaon Minimal-Time Vertex

Average of equal time limit (AETL)

igod
1+ < N ()}g—l—{ﬁf()} = T[D-}:]:;I;D+D:!}]£D /dq& Dtﬁﬁfﬁ(qﬂq"}*

w . . —i dpord” 1+
= 27 lim + lim ]/dqae 00 / poi ) a /dqmdqu‘zpt(q{luu)

I L0<6=0  0>6—0" . (2m)4 2

i E—i-t{t}“{}1—~:?{}z+-lfj 1

iy Ti;Uz:UniUy ;Us,

2T Qo1 — Qoo T i€ i

(1 — % rGR 7 Cs.rcr(p)[Dir(q) Dir(ar — p1) Dialqe)]

o2 qo1 — Pm]

Wirg Wirg—p

‘|‘D!,R(91)DLA(QE — pE)DI,A(QZ)[_ jfl + qiﬂ_ pm”i},ﬂ(iﬂz)gﬂ(m)[l - iij,AGA]_l(Pz)]
mq Tq—p

+[1 - iEz RGR] (pl)[cﬁzz R(PJ)[D:R(Ql)D:R(QJ Pl)Df,A(Qz)[

oz qo1 — Pm]

Wirg Wirg—p

+D1 r(q1) Dy a(g2 — p2) Dialge) [ — jfl + QZ_ pm]][l — i3 4G A7 (2)]G s 1.4 (p2).
g Tq—p



We can integrate over dg, to obtain

dpo d®p w
1+ < Ny{t) >1 + < Ny(t) >_= ]iﬁ;p 2 [ daordac

i e~ ®(qo1—qoatie) _
ZT U* .U, U* U,gJ-

2 Qo1 — qo2 i€ iy

o2 do1 — Po1
)— — ]

1 — % RG] [Gr(p1)Gr(p1)[Dir(g1) Dur(qr — p1) Dia(ge

Wimg Wirg—p

‘|‘DE,R(91)DE,A(QE — PE)DE,A(G’E)[— o T e pm”[l — iy, AGA] (Pz)]CA(PE)

Wing Wirg—p

=

—Xi.r(p1)rs(p2) + Ka(p1)Sia(p2))-

As there are only K; kaons (i.e. no K; kaons and no pions) in the beginning, the contribution

1s dominated by the choise \), = A, = A, = A, =land \,_) = -1.



PRELIMINARY

Upon taking into account the results of the quadruple integration (next subsection), we
obtain the main result
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This expression describes both mp and 7, [ = +1 decays. But as mol'g/wpq >> [y >> T >>
myl'/wiq, n the 7,7 decay we find both oscillation and decay, while in 27 case oscillation
term 1s completely negligible.

Kaon decay and subsequent Pion decay not statistically independent!

No chance to verify it experimentally. the reproduction of 27y decay vertices with enough
precission should not be expected.



Conclusions

We demonstrate that the Finite-Time-Path TFT is appropriate tool for the treatment of kaon
decay, oscillation and C'P-symmetry violation. Without any modification, just by the use of
appropriate input parameters the results are applicable also to B” and D° decays and oscilla-
tions.

Within a very simple model with Interaction Lagrangian built as mass mixing matrix ,
we calculate kaon decay, oscillation and C'P-simmetry violations. Caskading processes Ky —

m.+m_ and Kg — my+mp are calculated under the condition that pions decay further

The time dependent single particle distribution of pions show clear
oscillation patern for 7.. The Kg regeneration is strongly suresse in m; case.

Model kann predict ,at least in principle, some features like

1. Oscillation and decay parameters

2. Energy difference my, — mg,

3. It suggest the search for a process in which the suppresion of Ks regeneration can be
experimentally verified.



Drawbacks of the model:

1. These predictions rely heavily on the available calculations of various self-energies ¥V
While there is quite an amount of calculations of decay rates , but the calculations are done
with X, 1.e. not X%, mass shifts are almost never calculated.

2.5elf-energies are complicated analytic functions . They involve poles and cuts in the
complex plane. In this calculation these contirbutions(residues) are ignored. We use the value
of self-energy at a single point, and combine it with symmetry properties and the behaviour
near the edge of complex plane.

3. for four-point functions the formalism requires further development. Fortunatelly, to
calculate scattering processes, one can identify the contributions with integrated paricles degrees
of freedom , as it is usual when dealing with inclusive processes.



Further research can proceed along two main hnes:

l. fitting the data and work on improving the model by taking mto account the new data.

2. apply the formalism to the other oscillating and decay processes decay of positronium,
damping rates, i out of equilibrium many body problems, etc.

3.We have applied the method to the case of neutrino oscillations and obtained predictions
equivalent to Pontecorvo-Maki-Nakagawa-Sakata formula.

4. Intriguing possibility that eventual heavy neutrino decay may induce the time dependent
mixpure of neutrinos,



