Color Superconductivity in 2-Flavor QCD and its Role in Neutron Stars

Bernd-Jochen Schaefer

JUSTUS-LIEBIG-

May 5th, 2025

ACHT 2025: Non-perturbative methods in strongly interacting quantum many-body systems 5–7 May 2025Lágymányos Campus, Eötvös Loránd University, Budapest

QCD under extreme conditions

QCD under extreme conditions

QCD under extreme conditions

status first-principle QCD

low-T phases of dense matter

low-T phases of dense matter

low-T phases of dense matter

conflicting constraints on EoS

the ultimate goal

... solving first principle QCD

Connect low-energy models to first principle QCD

Functional Renormalization Group

Wetterich Equation (average effective action) regulator conditions: $R_k(p^2) = p^2 r(p^2/k^2)$ $t = \ln(k/\Lambda)$ $\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \partial_t R_k \left(\frac{1}{\Gamma_t^{(2)} + R_k} \right)$ $\lim_{p^2/k^2 \to \infty} R_k(p^2) = 0$ $\Gamma_k^{(2)} = \frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi}$ • $\lim_{p^2/k^2 \to 0} R_k(p^2) > 0 \ (=k^2)$ $k\partial_k\Gamma_k[\phi]\sim \frac{1}{2}$ R_k regulators $\lim_{k \to \infty} R_k(p^2) \to \infty$ [Wetterich 1993] Γ_{Λ} truncation: e.g. Quark-meson type approximation $\partial_t \Gamma^{\mathrm{trunc}}$ $\Gamma_k = \int d^4x \bar{q} [i\gamma_\mu \partial^\mu - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_5)]q + \frac{1}{2}(\partial_\mu\sigma)^2 + \frac{1}{2}(\partial_\mu\vec{\pi})^2 + V_k(\phi^2)$ $\mathbf{R_k}$ $V_{k=\Lambda}(\phi^2) = \frac{\lambda}{4}(\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma$ arbitrary potential Γ^{trunc}

QCD at finite density

- pQCD: @O(100 GeV) (deep high-energy perturbative region)
 n ~ 50-100 n₀
- large densities: m_q negligible ↔ µ
 CFL: diquark pairing (p=0, J^p=0⁺) always in QCD by gluon-exchange
- smaller densities: m_{strange} > m_{light} → smaller p_F
 CFL unstable due to different p_F
- 2SC or/and quaryonic phases

here: 2SC phases: 2 quark flavor with 2 color pair

 $SU(2)_L \times SU(2)_R \times SU(3)_c \to SU(2)_L \times SU(2)_R \times SU(2)_c$

via Higgs mechanism: 8-3 gluons become massive (no Goldstone bosons)

EoS from QCD

QCD procedure: start @O(100 GeV) (deep high-energy perturbative region)

[Braun et al. 2012++]

0000000

4-quark correlators

dynamical hadronization

• QCD procedure: start @O(100 GeV) (deep high-energy perturbative region)

[Braun et al. 2012++]

$$S = \int \mathrm{d}^4 x \left\{ \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \bar{g} A \!\!\!/ + \mathrm{i}\gamma_0 \mu \right) \psi \right\}$$

$$\partial_t$$
 = λ + g + g

beyond pointlike approximation → dynamical hadronization

 cast into quark-meson-diquark model truncation parametrizes low-energy regime with most important (pseudo)scalar and diquark channel

5.5.2025 | B.-J. Schaefer, JLU Giessen | CSU and Street

quark-meson-diquarks

• QCD procedure: start @O(100 GeV) (deep high-energy perturbative region) [Mir

[Mire, BJS to be published]

$$\begin{split} & \mathcal{L}_{\text{QMD}} = \bar{q} \left(\not{\!\partial} - \hat{\mu} \gamma_0 + g_\phi \left(\sigma + i \gamma_5 \vec{\pi} \, \vec{\tau} \right) \right) q \\ & + \frac{g_\Delta}{2} \left(\Delta_A^* \bar{q}_C \gamma_5 \tau_2 \lambda_A q - \Delta_A \bar{q} \gamma_5 \tau_2 \lambda_A q_C \right) \\ & + \left(\left(\partial_\nu + \delta_{\nu 0} 2 \mu \right) \Delta_A^* \right) \left(\partial_\nu - \delta_{\nu 0} 2 \mu \right) \Delta_A \\ & + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \vec{\pi})^2 + U(\rho, d) - c \sigma \end{split}$$
with $\rho = \frac{1}{2} (\sigma^2 + \vec{\pi}^2)$ and $d \equiv |\Delta|^2 = \sum_A \Delta_A^* \Delta_A$

(pseudo)-scalar

(anti)-diquarks

quark-meson-diquarks

[Mire, BJS to be published]

Quark-meson-diquark truncation at scale k_{Φ}

$$\mathcal{L}_{\text{QMD}} = \bar{q} \left(\not{\partial} - \hat{\mu} \gamma_0 + g_{\phi} \left(\sigma + i \gamma_5 \vec{\pi} \, \vec{\tau} \right) \right) q$$

$$+ \frac{g_{\Delta}}{2} \left(\Delta_A^* \bar{q}_C \gamma_5 \tau_2 \lambda_A q - \Delta_A \bar{q} \gamma_5 \tau_2 \lambda_A q_C \right)$$

$$+ \left((\partial_{\nu} + \delta_{\nu 0} 2\mu) \, \Delta_A^* \right) \left(\partial_{\nu} - \delta_{\nu 0} 2\mu \right) \Delta_A$$

$$+ \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \vec{\pi})^2 + U(\rho, d) - c\sigma$$

$$\partial_t U_k(\sigma, \Delta) = - \bigotimes_{q_r, q_g} - \bigotimes_{q_r, q_g} + \frac{1}{2} \left(\bigotimes_{-}^{\bigotimes} \right)_{\Delta_2, \sigma}$$

$$+ \frac{1}{2} \left(\bigotimes_{-}^{\bigotimes} \right)_{\pi} + \frac{1}{2} \left(\bigotimes_{-}^{\bigotimes} \right)_{\Delta_5, \Delta_7}$$

Fermi-surface

[Mire, BJS to be published]

no diquark loops

[Mire, BJS to be published]

Quark-meson-diquark truncation at scale k_{Φ}

$$\begin{split} \mathcal{L}_{\text{QMD}} &= \bar{q} \left(\not{\partial} - \hat{\mu} \gamma_0 + g_{\phi} \left(\sigma + i \gamma_5 \vec{\pi} \, \vec{\tau} \right) \right) q \\ &+ \frac{g_{\Delta}}{2} \left(\Delta_{\text{A}}^* \bar{q}_C \gamma_5 \tau_2 \lambda_{\text{A}} q - \Delta_{\text{A}} \bar{q} \gamma_5 \tau_2 \lambda_{\text{A}} q_C \right) \\ &+ \left(\left(\partial_{\nu} + \delta_{\nu 0} 2 \mu \right) \Delta_{\text{A}}^* \right) \left(\partial_{\nu} = \delta_{\nu 0} 2 \mu \right) \Delta_{\text{A}} \\ &+ \frac{1}{2} (\partial_{\mu} \sigma)^2 + \frac{1}{2} (\partial_{\mu} \vec{\pi})^2 + U(\rho, d) - c\sigma \\ &\quad \text{avoiding medium divergence} \\ &\sim \mu^2 \Delta^2 \end{split}$$

with
$$\rho = \frac{1}{2}(\sigma^2 + \vec{\pi}^2)$$
 and $d \equiv |\Delta|^2 = \sum_A \Delta_A^* \Delta_A$
(pseudo)-scalar (anti)-diquarks

Phase diagram: quark-meson-diquarks

[Mire, BJS to be published]

EoS & mass-radius relation

• First Quark-meson-diquark FRG results

[Mire, BJS to be published]

onset quark matter EoS:

diquark pole mass

superconducting quark core

already stable with present diquark parameters

mass-radius relation

tidal deformability

 First Quark-meson-diquark FRG results vs. MFA 10^{4} ▶ note: 6620 different 10740couplings! GW170817 10^{3} PSR $< 10^2$ HS(DD2) -LPA $g_{\Delta} = 6$ MFA $g_{\Delta} = 4$ $-g_{\omega} = 0.6 \quad --g_{\omega} = 1.0$ $-g_{\omega} = 0.5 \quad --g_{\omega} = 0.9$ $-g_{\omega} = 0.4 \quad --g_{\omega} = 0.8$ 10^{1} $-g_{\omega} = 0.3$ $--g_{\omega} = 0.7$ 10^{0} 1.252.001.001.501.752.252.50 M / M_{\odot}

[Mire, BJS to be published]