Yannick Dengler, Axel Maas, Fabian Zierler

Yannick Dengler, Axel Maas, Fabian Zierler

Outline

* Self-Interacting Dark Matter

Yannick Dengler, Axel Maas, Fabian Zierler

Outline

* Self-Interacting Dark Matter * Minimal Realisation: $Sp(4)_c$ with $N_f = 2$

Yannick Dengler, Axel Maas, Fabian Zierler

Outline

* Self-Interacting Dark Matter * Minimal Realisation: $Sp(4)_c$ with $N_f = 2$ Lattice Results

Dark Matter

- Collection of astronomical phenomena
 - * Motion of objects, Large scale structure, gravitational lensing, ...
 - * In conflict with our current understanding

Mario De Leo

Dark Matter

- Collection of astronomical phenomena
 - * Motion of objects, Large scale structure, gravitational lensing, ...
 - * In conflict with our current understanding
- * Explanations:
 - Modified Gravity
 - * Not observable sort of matter

Mario De Leo

Dark Matter Particle

* Evidence for particle DM:

* i.e. "Bullet cluster"

Chandra X-ray Observatory

Dark Matter Particle

- * Evidence for particle DM:
 - * i.e. "Bullet cluster"
- * Properties:
 - * Massive, stable, "invisible"

Chandra X-ray Observatory

Dark Matter Particle

- * Evidence for particle DM:
 - * i.e. "Bullet cluster"
- * Properties:
 - * Massive, stable, "invisible"
- * Interaction?
 - * With SM: no (low)
 - * Self: Maybe

Chandra X-ray Observatory

Self-interaction

* "Small structure problems"

* Diversity, too-big-to-fail, missing satellites, cusp vs. core

Self-interaction

- * "Small structure problems"
 - * Diversity, too-big-to-fail, missing satellites, cusp vs. core
- * Core-like shape preferred
 - * Hints towards self-interaction

Tulin, Yu: arXiv:1705.02358 (2017)

Self-interaction

- * "Small structure problems"
 - * Diversity, too-big-to-fail, missing satellites, cusp vs. core
- * Core-like shape preferred
 - * Hints towards self-interaction
- * Upper bounds on cross-section from the bullet cluster

Tulin, Yu: arXiv:1705.02358 (2017)

* "Dark matter halos as particle colliders" * Larger object \rightarrow larger $\langle v_i \rangle \& \langle v \rangle$

Velocity-dependent cross-section

* "Dark matter halos as particle colliders" * Larger object \rightarrow larger $\langle v_i \rangle \& \langle v \rangle$ * Fit halo shape to simulations

- * "Dark matter halos as particle colliders"
 - * Larger object \rightarrow larger $\langle v_i \rangle \& \langle v \rangle$
- * Fit halo shape to simulations
- * Mild velocity dependence @ nonrelativistic velocities

- * "Dark matter halos as particle colliders"
 - * Larger object \rightarrow larger $\langle v_i \rangle \& \langle v \rangle$
- * Fit halo shape to simulations
- * Mild velocity dependence @ nonrelativistic velocities
- * Thermalized dark matter

- * "Dark matter halos as particle colliders"
 - * Larger object \rightarrow larger $\langle v_i \rangle \& \langle v \rangle$
- * Fit halo shape to simulations
- * Mild velocity dependence @ nonrelativistic velocities
- * Thermalized dark matter
- * Only $\sigma(s)$ needed

Can be done on the lattice

* Possibility: Dark matter as as a thermal relic from the early universe

- * Possibility: Dark matter as as a thermal relic from the early universe
- * Handle on the dark matter abundance

- * Possibility: Dark matter as as a thermal relic from the early universe
- * Handle on the dark matter abundance
- Solve Boltzmann equations
 - * Temperature decreases \rightarrow interaction "freezes out"

- * Possibility: Dark matter as as a thermal relic from the early universe
- * Handle on the dark matter abundance
- Solve Boltzmann equations
 - * Temperature decreases \rightarrow interaction "freezes out"
- Example: *
 - * WIMP: $DM + DM \rightarrow SM + SM$

Strongly Interacting Massive Particles

Alternative freeze-out paradigm

Strongly Interacting Massive Particles

- Alternative freeze-out paradigm
- * Number lowering process in the dark sector
 - Addresses self-interaction

Strongly Interacting Massive Particles

- Alternative freeze-out paradigm
- * Number lowering process in the dark sector
 - Addresses self-interaction
- * Coupling to the SM sector needed to prevent heat-up
 - Mediator enables direct detection

* Strong coupling arises *naturally* in confining gauge theories * $\mathscr{L} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \bar{q}_i(i\gamma^{\mu}D_{\mu} - m_i)q_i$

* Strong coupling arises *naturally* in confining gauge theories

*
$$\mathscr{L} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \bar{q}_i(i\gamma^{\mu}D_{\mu} - m_i)q_i$$

- * Symmetry depends on representation
 - * Fundamental, adjoint, antisymmetric, ...

* Strong coupling arises *naturally* in confining gauge theories

*
$$\mathscr{L} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \bar{q}_i(i\gamma^{\mu}D_{\mu} - m_i)q_i$$

- * Symmetry depends on representation
 - * Fundamental, adjoint, antisymmetric, ...

Symmetry of the UV Lagrangian

Representation of gauge group	Flavour symm
Complex	U(2)xU(2
Real	U(4)
Pseudoreal	U(4)

* Strong coupling arises *naturally* in confining gauge theories

*
$$\mathscr{L} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \bar{q}_i(i\gamma^{\mu}D_{\mu} - m_i)q_i$$

* Symmetry depends on representation

* Fundamental, adjoint, antisymmetric, ...

Also different breaking patterns **

Symmetry of the UV Lagrangian

Representation of gauge group	Flavour symm
Complex	U(2)xU(2
Real	U(4)
Pseudoreal	U(4)

Minimal realisation

* Pseudo-real rep of gauge group with $N_f = 2$

* Sp(4) flavour symmetry

Minimal realisation

* Pseudo-real rep of gauge group with $N_f = 2$

* Sp(4) flavour symmetry

- Mixing of left- and right handed components (Weyl-fermions)
 - * Symmetry is enlarged

Minimal realisation

* Pseudo-real rep of gauge group with $N_f = 2$

* Sp(4) flavour symmetry

- Mixing of left- and right handed components (Weyl-fermions)
 - * Symmetry is enlarged
- * Result: 5 pNGBs
 - * $3 \rightarrow 2$ process possible
 - WZW description in ChPT

* Effective description in terms of 5 dark Pions

- Effective description in terms of 5 dark
 Pions
- * Include a vector particle and a mediator to the standard model

- * Effective description in terms of 5 dark Pions
- * Include a vector particle and a mediator to the standard model
- * Include $3 \rightarrow 2$ via Wess-Zumino-Witten term

- * Effective description in terms of 5 dark Pions
- * Include a vector particle and a mediator to the standard model
- * Include $3 \rightarrow 2$ via Wess-Zumino-Witten term
- Relies on low energy constants
 - * Masses, scattering length, ...

Particle phenomenology

Zoo of dark hadrons

Particle phenomenology

- Zoo of dark hadrons
- * 5 Pions & 10 Rhos lightest non-singlets

Particle phenomenology

- Zoo of dark hadrons
- * 5 Pions & 10 Rhos lightest non-singlets
- No fermionic bound states

Scattering phenomenology

* **14**-dim:

- * (Probably) contributes most to $\pi\pi$ -scattering
- * 14 out of 25 possible combinations of Pions

$$Sp(4)_f$$

$$5 \otimes 5 = 1 \oplus 10 \oplus 14$$

$$\pi\pi \rightarrow \pi\pi (I=0,1,2)$$

 $\pi\pi \rightarrow \rho (I=1)$
 $\pi\pi \rightarrow \pi\pi\pi (I=1)$
etc.

Scattering phenomenology

* **1**-dim:

- * (Probably) no large contribution to $\pi\pi$ -scattering
- * Mixes in other scattering channel
- * Numerically challenging

$$Sp(4)_f$$

$$5 \otimes 5 = 1 \oplus 10 \oplus 14$$

$$\pi\pi \rightarrow \pi\pi (I=0,1,2)$$

 $\pi\pi \rightarrow \rho (I=1)$
 $\pi\pi \rightarrow \pi\pi\pi (I=1)$
etc.

Scattering phenomenology

* **10**-dim:

- * Mixing with the Rho
- * $\pi\pi\pi \to \pi\pi$
- * Work in progress

$$Sp(4)_f$$

 $5 \otimes 5 = 1 \oplus 10 \oplus 14$

 $\pi\pi \rightarrow \pi\pi (I=0,1,2)$ $\pi\pi \rightarrow \rho (I=1)$ $\pi\pi \rightarrow \pi\pi\pi (I=1)$ etc.

Phenomenology of scattering channels

Done 🗸

- * 14-dim:
 - * Makes up most $\pi\pi$ scattering (14/25)
 - * Easiest on the lattice
- * **10**-dim:

Work in progress

- * Mixing with dark ρ
- * $\pi\pi\pi \to \pi\pi$
- * **1**-dim:
 - * Mixing with other states

 $Sp(4)_f$

$$5 \otimes 5 = 1 \oplus 10 \oplus 14$$

$$\pi\pi \rightarrow \pi\pi (I=0,1,2)$$

 $\pi\pi \rightarrow \rho (I=1)$
 $\pi\pi \rightarrow \pi\pi\pi (I=1)$
etc.

- * Relate finite volume energy levels with infinite volume scattering properties
 - * "Lüscher quantization condition"

* Relate finite volume energy levels with infinite volume scattering properties * "Lüscher quantization condition" * $\tan(\delta(\sqrt{s})) = f(E, \overrightarrow{P}, L)|_{E=E(L)}$

- * Relate finite volume energy levels with infinite volume scattering properties
 - * "Lüscher quantization condition"
- * $\tan(\delta(\sqrt{s})) = f(E, \overrightarrow{P}, L)|_{E=E(L)}$
- * Result: Energy-dependent phase-shift
 - * Scattering length, cross-section, ...

- * 14-dim channel:
 - * Test ChPT prediction
 - * Comparison astro data

- * **14**-dim channel:
 - * Test ChPT prediction
 - * Comparison astro data
- * **10**-dim channel:
 - * Work in progress
 - * Preliminary comparison to 14

χ -pT comparison

* Maximal channel

χ -pT comparison

* Maximal channel

* Prediction:
$$a_0 m_\pi = \frac{1}{32} \left(\frac{m_\pi}{f_\pi}\right)^2$$

χ -pT comparison

* Maximal channel

* Prediction:
$$a_0 m_\pi = \frac{1}{32} \left(\frac{m_\pi}{f_\pi} \right)^2$$

0

* ChPT works well * NLO?

$$\langle \sigma v \rangle = \int_0^{v_{esc}} dv \,\sigma(v) \, v f(v)$$

* Assumption: s-wave and maximal scattering channel

$$\langle \sigma v \rangle = \int_0^{v_{esc}} dv \, \sigma(v) \, v f(v)$$

- * Assumption: s-wave and maximal scattering channel
- * No sign for a velocity dependence
 - * Discrepancy in $a_0 m_{DM}$

hted cross-section

$$\langle \sigma v \rangle = \int_0^{v_{esc}} dv \,\sigma(v) \, v f(v)$$

- * Assumption: s-wave and maximal scattering channel
- * No sign for a velocity dependence
 - * Discrepancy in $a_0 m_{DM}$
- * $m_{DM} \sim 100 \,\text{MeV}$ predicted by SIMP

Work in Progress

- * **10**-dim scattering channel: 3 ensembles: $* \frac{m_{\rho}}{m} = \{1.6, 1.9, 2.3\}$ M_{π}
- * Non-resonant: Cross-sections comparable
- * What happens if the vector meson becomes resonant (like in QCD)?
 - * Work in progress

Work in Progress

- * **10**-dim scattering channel: 3 ensembles: $* \frac{m_{\rho}}{m} = \{1.6, 1.9, 2.3\}$ M_{π}
- * Non-resonant: Cross-sections comparable
- * What happens if the vector meson becomes resonant (like in QCD)?
 - Work in progress
- * Energy levels can be reused for $3\pi \rightarrow 2\pi$

- * Non-perturbative results for $\pi\pi$ -scattering
- * First principle verification for low energy constants

* With $\pi\pi \to \rho \& \pi\pi\pi \to \pi\pi$ we will obtain a good understanding of the model

- * Non-perturbative results for $\pi\pi$ -scattering
- First principle verification for low energy constants

* With $\pi\pi \to \rho \& \pi\pi\pi \to \pi\pi$ we will obtain a good understanding of the model

