Instantons and the Anomalous $U(1)_A$ Symmetry in High Temperature QCD

Tamás G. Kovács

Eötvös Loránd University, Budapest, Hungary and Institute for Nuclear Research, Debrecen, Hungary

Partly based on TGK, PRL 132 (2024) 131902

ACHT 2025, ELTE, Budapest, May. 6, 2025

Symmetries of QCD and their realization

• $m_{\rm u} pprox m_{\rm d} pprox 0$

- Symmetries: $SU(2)_L \times SU(2)_R \times U(1)_V \times U(1)_A$
 - $U(1)_A$ anomalous
 - $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ spontaneously broken below T_c
- Order parameter of the symmetry breaking (Banks-Casher formula):

$$\langle \bar{\psi}\psi \rangle \propto \frac{1}{V} \sum_{i} \frac{1}{\lambda_{i}+m} \propto \int_{-\Lambda}^{\Lambda} d\lambda \; \frac{m}{\lambda^{2}+m^{2}} \, \rho(\lambda) \xrightarrow[m \to 0]{} \rho(0)$$

 λ_i : eigenvalues of the Dirac operator, $\rho(\lambda)$: its spectral density

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

Above T_c

- Chiral symmetry restored
- Order parameter $\rho(0) = 0$
- (Pseudo)gap lowest Matsubara mode

spectral density at 0 \iff realization of chiral symmetry

Spectral density at $T = 1.1 T_c$ on the lattice

quenched (quark back reaction omitted)

Peak at zero in the spectral density!

Edwards et al. PRD 61 (2000); Alexandru & Horvath, PRD 92 (2015); 2404.12298; Kaczmarek, Mazur, Sharma, PRD 104 (2021) 2021

• Why is there a peak at zero?

• How is it suppressed if the quark determinant is included?

• How does the peak influence chiral symmetry as $m \rightarrow 0$?

• (Anti)instanton

 \rightarrow zero eigenvalue of D(A) with (-)+ chirality eigenmode

High T:

large instantons "squeezed out" in the temporal direction

- \rightarrow dilute gas of instantons and antiinstantons
- Zero modes exponentially localized:

$$\psi(r) \propto \mathrm{e}^{-\pi T r}$$

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi T r}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi T r}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi T r}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi T r}$$

Spectrum of D(A)

Spectrum of D(A) in dilute gas of instantons

The Dirac operator in the subspace of zero modes

 n_i instantons n_a antiinstantons

 \rightarrow $|n_i - n_a|$ exact zero modes + mixing near zero modes

Dirac operator in the subspace of zero modes (ZMZ)

Work by E.V. Shuryak, J.J.M. Verbaarschot, T. Schäfer (1990-2000)...

- Given n_i instantons, n_a antiinstantons in 3d box of size L^3
- Construct $(n_i + n_a) \times (n_i + n_a)$ matrix:

• $w_{ij} = A \cdot \exp(-\pi T \cdot r_{ij})$ r_{ij} is the distance of instanton *i* and antiinstanton *j*

Random matrix model of D(A) in the zero mode zone

- How to choose instanton numbers (*n*_i, *n*_a) and locations?
- Quenched lattice $T > 1.05 T_c \rightarrow$ free instanton gas

Bonati et al. PRL 110 (2013); Vig R. & TGK, PRD 103 (2021)

• n_i and n_a independent identical Poisson-distributed

$$p(n_{i}, n_{a}) = e^{-\chi V} \cdot \frac{(\chi V/2)^{n_{i}}}{n_{i}!} \cdot \frac{(\chi V/2)^{n_{a}}}{n_{a}!}$$

 χ is the topological susceptibility

Locations random (uniform)

$\bullet \ \rightarrow \ \ D(A) \ in \ quenched \ QCD \ \Leftrightarrow \ ensemble \ of \ random \ matrices$

Fit parameters to quenched lattice Dirac spectrum $T = 1.1 T_c$ overlap Dirac spectrum

- Two parameters:
 - χ topological susceptibility: from exact zero modes $\rightarrow \chi = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes
- Fit A to distribution of Dirac eigenvalues (lowest eigenvalue)

Fit parameters to quenched lattice Dirac spectrum $T = 1.1T_c$ overlap Dirac spectrum

- Two parameters:
 - χ topological susceptibility: from exact zero modes $\rightarrow \chi = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes
- Fit A to distribution of Dirac eigenvalues (lowest eigenvalue)

Random matrix model of full QCD zero mode zone

• Include $det(D+m)^{N_f}$ in Boltzmann weight

•
$$\det(D+m) = \prod_{\mathsf{zmz}} (\lambda_i + m) \times \prod_{\mathsf{bulk}} (\lambda_i + m)$$

Bulk weakly correlated with zero mode zone

• Approximate det with
$$\prod_{zmz} (\lambda_i + m)$$

$$P(n_{\rm i}, n_{\rm a}) = \underbrace{e^{-\chi_0 V} \frac{1}{n_{\rm i}!} \frac{1}{n_{\rm a}!} \left(\frac{\chi_0 V}{2}\right)^{n_{\rm i}+n_{\rm a}}}_{\text{free instanton gas with random locations}} \times \det(D+m)^{N_{\rm f}}$$

Random matrix simulation: results for $N_f = 2$

Topological susceptibility:

Random matrix simulation: results for $N_f = 2$

Topological susceptibility: $\chi(m) = m^2 \chi_0$ not a fit! ↑ quenched susceptibility 16 14 χ(m) $m^2\chi_0$ 12 10 χ(m) 8 6 Δ 2 0 0.05 0.1 0.15 0.2 m

amás G. Kovács (Eőtvös Loránd University, Budapest) Instantons and the Anomalous U(1)_A Symmetry in Hot QCD 13/22

Explanation: free instanton gas

• Quark determinant for n_i instantons and n_a antiinstantons:

$$\det (D+m)^{N_f} = \prod_{n_i, n_a} (\lambda_i + m)^{N_f} \approx m^{N_f(n_i + n_a)}$$

if $|\lambda_i| \ll m$

 Reweighting depends on number of topological objects, not on their type or location

$$P(n_{\rm i},n_{\rm a}) \propto \left(\frac{\chi_{\rm o}V}{2}\right)^{n_{\rm i}+n_{\rm a}} imes \det(D+m)^{N_{\rm f}} \approx \left(\frac{m^{N_{\rm f}}\chi_{\rm o}V}{2}\right)^{n_{\rm i}+n_{\rm a}}$$

- Free gas, but susceptibility suppressed as $\chi_{\scriptscriptstyle 0}
 ightarrow m^{N_{\scriptscriptstyle f}} \chi_{\scriptscriptstyle 0}$
- As $m \rightarrow 0$ instanton gas more dilute $\Rightarrow |\lambda_i|$ smaller
- Even in the chiral limit $|\lambda_i| \ll m \implies$ free instanton gas & singular spike

"Banks-Casher" for singular spectral density

$$\langle \bar{\psi}\psi \rangle \propto \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{\underbrace{\left(\substack{\text{avg. number of in-} \\ \text{stantons in free gas}}\right)}_{m^{N_{f}}\chi_{0}V} \cdot \frac{1}{m} = m^{N_{f}-1}\chi_{0}V$$
 $|\lambda_{i}| \ll m$

"Banks-Casher" for singular spectral density

$$\langle \bar{\psi}\psi \rangle \propto \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{(\overset{\text{avg. number of in-}}{\underset{\text{stantons in free gas}}{\text{stantons in free gas}}} \cdot \frac{1}{m} = m^{N_{f}-1}\chi_{0}V$$

 $|\lambda_{i}| \ll m$

 $U(1)_{A}$ breaking susceptibility $\chi_{\pi} - \chi_{\delta}$

$$\langle \sum_{i} \frac{m^{2}}{(m^{2} + \lambda_{i}^{2})^{2}} \rangle \approx \underbrace{(\underset{\text{stantons in free gas}}^{\text{(avg. number of in-)}}}_{m^{N_{f}} \chi_{0} V} \cdot \frac{1}{m^{2}} = m^{N_{f} - 2} \chi_{0} V$$

$$\rightarrow \lim_{m \to 0} (\chi_{\pi} - \chi_{\delta}) \neq 0 \qquad \text{for } N_{f} = 2$$

Conclusions

- At high T non-interacting degrees of freedom: free "instantons"
- Dirac spectral density has singular peak at zero at any finite *T*, for any nonzero quark mass
- Chiral symmetry restoration nontrivial $\rightarrow N_f \leq 2$: $U(1)_A$ anomaly remains
- Spontaneously broken SU(2) restored
- Chiral limit with *N*_f degenerate light quarks:
 - $\langle \bar{\psi}\psi \rangle \propto m^{N_{\rm f}-1}$

• $\chi_{\pi} - \chi_{\delta} \propto m^{N_{\rm f}-2}$

agrees with small *m* expansion of the free energy

Kanazawa and Yamamoto, PRD 91 (2015), JHEP 01 (2016)

also with exact constraints on the Dirac spectrum

→ Matteo's talk