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Motivation
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LHCb: Phys. Rev. Lett. 115, 072001 (2015).

Goal Solve the Bethe-Salpeter equation for a system of five scalar particles
interacting by a scalar boson exchange, a massive Wick-Cutkosky model.

e We implement properties of the permutation group Ss

¢ We extract the ground and excited states along with the spectra of two-, three

and four-body equations.

e Qur study serves as a building block for the calculation of pentaquark properties

using functional methods.
Raul D. Torres (IST/LIP)
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Five-body equation
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G.Eichmann, M.T.Pena and R. D. Torres, arXiv:2502.17944.
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Starting point The homogeneous Bethe-Salpeter equation for a five body system:

[ ré — K(5)G(()5)F(5) (1 )J

K ) is the five-body interaction kernel.

Gé5) is the product of five dressed propagators.
') is the five-body Bethe-Salpeter amplitude.
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Five-body equation
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The five-body BSE can be derived from the
pole behavior of the 5-body scattering ma-
trix 7(), which is a ten-point correlation

function
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At a given bound-state or resonance pole
with mass M,

[ 76) — K6 4 KOGOTE) (2)}

F(5)f(5)

(5) -
— P2+M27 (3)
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Subtraction diagrams
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10 permutations 15 permutations
A naive summation of two body and 15 independent double-kernel
kernels leads to overcounting. r 2

Phys. Lett. B 718, 545 (2012).
/ KKy € {Ki12K34, K12K35, K12Kus,

In a five-body system there are ten KisKos, K13Kas, Ki3Kus,
possible two-body kernels K1aKos, KiaKos, K1aKss,
Ki5Ko23, Ki5K24, K15K34, ()
K, E{Klg, Kis, K14, K15, Kas, ” i Ko3Kus, KoaK3s, KosK3a}. |

Koy, Kas, K34, Kus},
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Explicit form of the BSE

& ﬁg}z g}

10 permutations

The BSE depends on five momenta
p1,- -+ ps, whose sum is the total onshell
momentum P with P? =

—M?.

{pz Z F(a) {pz

Z 1—‘(az b) {pz

a#b
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15 permutations

~\

F(a) ({pz}) :/ (;lT;K(pm sdaqsPass qaz)
X D(qay ) D(qas )T ({pi}, ),
Loy (o)) = [ gT;K(pal,qal,paz,qa2>

X D(qa1)D(ga:)T'w) ({pi}, @) -

J/
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Lorentz invariants
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10 permutations 15 permutations

In practice we work with the total mo-
mentum P and four relative momenta
p, q, k, 1 instead of the five particle mo-
menta.

:Pl—ps :pz—ps

Raul D. Torres (IST/LIP)

The amplitude I'(q,p, k,l, P) depends on
15 Lorentz invariants

( N\
9 w1 =4-D,
qQ’ wp =q-k, m =q-P,
22: wg =q-1, m =p-P,
2 wy =p-k, ns =k-P,
=3 ws =p-l, n =101-P.
we =k-I,
(8)
. J

These can be arranged into two sin-
glets, two quartets and a quintet in S5.
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Permutation Group S5

S5 consist of 5! = 120 elements and each

permutation of an object fi2345 can be

reconstructed from two group elements,

a transposition T and a 5 — cycle C.
G.E. and R. D. T., arXiv:2502.17225.
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The Cayley graph can be visualized by 24
pentagons, which are connected to each
other by transpositions. The members are
obtained by two successive chains of the
form (C2, T2, C2, T,CT,T).
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Permutation Group S5

For later use, we collect the elements in the
first five squares (A, B,C, D, F) into five
vectors f( with n = 1,---,5. Together
with the transpositions Tf("), this yields
twelve elements for each vector.

Raul D. Torres (IST/LIP)

The remaining five squares (F,G,H,1,J)
define the vectors f( with n = 1,--- 5.
Again, combined with the transpositions
TF(™, each vector f(™ defines a closed
path with twelve elements.
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Permutation Group S5

1 4 5 6 5 4 1
S oF Vj* Wi 173 o A
1] | L | %
LTTTT] L
4 )
S S S 5 -
A —-A A A
7| Q || ATIQ | | @ |=|CiQ |, 9)
p) ATV V) ci V)
W, T W, Wi cIw, |
g J

The 120 permutations transform under irreducible representations of S; and are given
by Young diagrams of Ss.
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Permutation Group S5 and five-body systems

One singlet is P2 and the other The two quartets are given by
(
6 i 2 2 2
1 1 q —p” — 34
So=- P+ + 2+ -2 wi].
SHGE PB o | H@rR-w-1a
(10) (PP k-3 - 2o |
_ 1 g( 2 2 2 2 _
. . @ +p°+k+17—8%)
The quintet is given by e
7 N\ m —n2
iy _
m + n2 — 2ns3)
2 — — — Qo = VB ) (11)
\/;(wl—kw2 ws + ws — w5 — we) %(7]1+?72+773*3?74)
2W1 — Wy — w3 — wq — W5 + 2we 1 (G o 2 i)
V= \/§(w2—w3—w4+w5) \ - Y y
W2 + W3 — Wg — Ws
%(2&)1—&)24—&)3—&144-&}5—2606)
. J

Raul D. Torres (IST/LIP) May 6, 2025 | 11/28




Permutation Group S,, and n-body systems

n S P* m pi...p2 M Total Indep.
2 1 1 1 - _ 3

31 1 2 2 _ 6 6
4 1 1 3 3 2 10 10
5 1 1 4 4 5 15 14
6 1 1 5 5 9 21 18

n 1 1 n-1 n-1 nn-3)/2 nn+1)/2 4n—6

e P2 is a singlet, and one singlet as the e The variables p? - - - p? form another (n —

sum pf + - -+ p2. 1)—plet.
e n — 1 angular variables n; form an (n — e n(n — 3)/2 gives another multiplet M.
1)—plet.
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Five-body system - dimensional constraint

o o o

e 1 four-vectors depend on 4n — 6 indepen-
dent variables.

e The five vectors only have 14 indepen-
dent entries and thus only 14 independent
Lorentz invariants.

e n—body system with n > 5 independent
four-momenta gives 4n — 6 independent
Lorentz invariants ( opposed to n(n+1)/2).

Raul D. Torres (IST/LIP)
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k= U= ; (12)
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e In n = 5 yields one constraint equation.

e The constraint relates all variables.

2 2 2 2 2] .2
{(WIZ’ w34 + w13 w24 + wigaw23)” — g7 93 93 tZ4] P

2 2 2 2 2 2 2 2 2 2
+> [qj 4, 9] — 95 Wiy — 9k Wi — 9 ij]
i
2 2.2
+ 22 (m —q; P ) Wk Wil Wkl
i (13)
2 2 2
+ Z ni M5 [2qk (wil Wil —q; "Jij) + q) wik Wik
i<j
+ Wit (Wi wrt — Wik w1 — Wil wjk)]

2 2 (2 2 2
+ P2y wy (qkql_wkl)zo’
i<j
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Explicit form of the BSE

- 1)
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10 permutations 15 permutations

e Solutions of two-, three- and four-body
systems show that the dependence on the
angular variables 7; is usually small or neg-
ligible.

e Four-body BSE dynamically generates
intermediate two-body poles in the solution
process.

e In a five body there are 10 possible two-
and three-body configurations.

We reduce the momentum dependence to
Sp but include two- and three-body poles:

(p,q,k,l,P SO Zpaa/ (14)

with
1 1
p1+p2)?+ M2, (ps+ps—+ps)?+ M-

P(12)(345) = 0



Explicit form of the BSE

& =S g}

10 permutations

e Procedure requires knowledge of bound-
state masses M,;, Mp of the two- and
three-body equations in the same ap-
proach.

e We employ a dimensionless coupling
constant ¢ and mass ratio S via:

15 permutations

e Employing tree-level propagators for
scalar particles with mass m and a ladder
approximation for a boson exchange with
mass u:

g2

T2 20

1
D(p) =———
(p) o

K(pa1 yqay s Pag, Qa2)
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Explicit form of the BSEs

The BSEs turn into eigenvalue equations ,,
of the form P2 = + +£
p3
[ Xi(P?)W;(P?) = K(P?)W;(P?), (17)] 15
- - r
where P2 ¢ C is the five-body momen- 2 2 1=

tum squared, K(P?) is the kernel and the

1 L
6 permutations 3 permutations

U;(P?) are its eigenvectors with eigenval-
ues \;(P?) for the ground (i = 0) and ex-
cited states (i > 0). I'({p:}) ZH@ {r:}),

(18)

L({p:}) Zf(a {p}) =D Tn{pi})

a#b
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Results
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Results
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Results

I
S)

=
©
s

-
o
L

PoNOXY puc

—-
IS
L

Re c/A(n)
- -
o )
L N
p1eIs

I
©
s

o
=3
L

o
~
s

1.0
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two-, three-, four- and five-body BSEs.
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Results - extra applications with S; for five-point functions

Sik = Sjk

Raul D. Torres (IST/LIP)

e Five-point function depends on five incoming momenta
with the sum p}' + --- + p£ = 0. Singlet vanishes and re-
maining four independent momenta form a quartet:

Py —ph p"

9= 75 (P} +pb — 2p) | ¢ (19)
75 (01 + b + 5 — 3pF) K
5 (Y + ph + P+ plf — 4pF) "

e One obtains a singlet Q - Q, a quartet @ A Q, a quintet

QU Q and a sextet Q x Q.

¢ Five-point functions can define ten Mandelstam variables
V3 (sik — sji) v — Sikt 8k = 28ij

2 _ =
rr— D R X — T
iJ (pz p]) Sik + Sjk + Sij Sik T Sjk T Sij

Intermediate resonances appear at fixed s;;.
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Results - extra applications with S; for five-point functions

Sik = Sjk

Raul D. Torres (IST/LIP)

e Five-gluon vertex general form reads

R S s

There are four types of color structures as seed elements

6ab fcde 5 fabr fcds fe'r.s 5 fzg = 61] fklm 5

k<l<m,
(Sab dcde ; fabr fcds ders . dzg = 61] dklm 5

(21)
e Ten permutations of d;; can be grouped into a singlet, a
quartet and a quintent.
e Ten of f;; return an antiquartet and a sextet.
e The seed fuu, feas fers fOrm a sextet.
e The seed fuu feas ders Yi€lds an antisinglet and an anti-
quartet.
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Summary

QP P ed

10 permutations 15 permutations

e We developed the five-body Bethe-Salpeter formalism and solve the five-body equa-
tion for a scalar model in a ladder truncation.

e We discussed applications of the permutation group S5 for five-point functions and
five-body wave functions.

e The approach developed in this work can be extended to QCD in view of investigating
pentaquarks, and work in this direction is underway.
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Backup slides - Three-body equation

SRR R RIRD

The Bethe-Salpeter amplitude I'({p; }) for a three-body system depends on three mo-
menta py, p2, p3, Wwhose sum is the total onshell momentum P with P? = —M3.

{pz ZF (a) {pz
(22)
d4r
Pw((pi}) = /WK(paﬂqaupm,q@)D(qal) (40 T({pi} )

In this care the are three possible two-body kernels K, € { K2, K13, K23} whose sum
does not lead top overcounting in the three-body scattering matrix kernel 7).



Backup slides - Three-body equation

8 SR VR

We furthermore employ a single x pole approximation

1

, 23
(p1 +p2)? + MJQVI (©3)

T(q,p, P)~ f(S0) Y Pay  Pra=

with M, the mass of the two-body subsystem or ‘diquark’, and the singlet variable S
is

2 2
_4 ., P
So—3+4. (24)



Backup slides - Four-body equation

2 @@z %}

6 permutations 3 permutations

In this case there are six possible two-body kernels
Ko € {Ki2, K13, K, Koz, Koy, Kau} (25)
and three independent double-kernel configurations of the form

K, Ky € {K12 K3y, K13 Koy, K14 Kos}. (26)

The four-body Bethe-Salpeter amplitude I'({p; }) depends on four-momenta p; ... py,
whose sum is the total onshell momentum P with P? = —M2 (T for ‘tetra’).



Backup slides - Four-body equation
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6 permutations 3 permutations

The four-body equation is the Faddeev-Yakubowsku equation and can be written as
3
{pl Z F(a) {pz - Z F(a,b) ({pz}) )
a#b

4T
P (i) = / (jﬂ) K (P dor- Do ) D) Dlgan) T({pitoa) . @7)

d4r
s ({pi}) = / 7 K 1P 90) D(0) D) T (i)



Backup slides - Four-body equation

D2
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6 permutations 3 permutations

In the four-body case we employ the singlet x pole approximation
F(q p7k P SO Zpaa 9 (28)

where the two-body poles for aa’ = (12)(34) are given by
1 1

P = 29
(2 (p1+p2)? + M3, (p3 + pa)? + M3, (29)
and M, is the mass of the two-body subsystem. The singlet variable S is
2 2 2
Sy = K4 +p ) (30)

4
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