Five-body systems with Bethe-Salpeter equations

Raul Torres (Raul D. Torres)

With G. Eichmann and M. T. Peña

Instituto Superior Tecnico, Lisboa, Portugal ACHT 2025: Non-perturbative methods in strongly interacting quantum many-body systems.

May 6, 2025, Budapest, Hungary

G. E. and R. D. Torres, Five-point functions and the permutation group S5, arXiv:2502.17225.
 G. E., M. T. P. and R.D. Torres, Five-body systems with Bethe-Salpeter equations, arXiv:2502.17944.

Motivation

LHCb: Phys. Rev. Lett. 115, 072001 (2015).

Goal Solve the Bethe-Salpeter equation for a system of five scalar particles interacting by a scalar boson exchange, a massive Wick-Cutkosky model.

- We implement properties of the permutation group S₅
- We extract the ground and excited states along with the spectra of two-, three and four-body equations.
- Our study serves as a building block for the calculation of pentaquark properties using functional methods.

Five-body equation

G.Eichmann, M.T.Peña and R. D. Torres, arXiv:2502.17944.

Starting point The homogeneous Bethe-Salpeter equation for a five body system:

$$\Gamma^{(5)} = K^{(5)} G_0^{(5)} \Gamma^{(5)}$$

(1

 $K^{(5)}$ is the five-body interaction kernel.

is the product of five dressed propagators. is the five-body Bethe-Salpeter amplitude.

 $\Gamma^{(5)}$

Five-body equation

The five-body BSE can be derived from the pole behavior of the 5-body scattering matrix $T^{(5)}$, which is a ten-point correlation function

$$T^{(5)} = K^{(5)} + K^{(5)} G_0^{(5)} T^{(5)}$$
 (2)

At a given bound-state or resonance pole with mass M,

$$T^{(5)} \longrightarrow \frac{\Gamma^{(5)}\overline{\Gamma}^{(5)}}{P^2 + M^2},$$
 (3)

Subtraction diagrams

A naive summation of two body kernels leads to overcounting. Phys. Lett. B 718, 545 (2012).

In a five-body system there are ten possible two-body kernels

$$K_a \in \{K_{12}, K_{13}, K_{14}, K_{15}, K_{23}, K_{24}, K_{25}, K_{34}, K_{45}\},$$
(4)

and 15 independent double-kernel

```
K_{a}K_{b} \in \{K_{12}K_{34}, K_{12}K_{35}, K_{12}K_{45}, K_{13}K_{24}, K_{13}K_{25}, K_{13}K_{45}, K_{14}K_{23}, K_{14}K_{25}, K_{14}K_{35}, K_{15}K_{23}, K_{15}K_{24}, K_{15}K_{34}, (5) K_{23}K_{45}, K_{24}K_{35}, K_{25}K_{34}\}.
```

Explicit form of the BSE

The BSE depends on five momenta $p_1, \dots p_5$, whose sum is the total onshell momentum P with $P^2 = -M^2$.

$$\Gamma(\{p_i\}) = \sum_{a}^{10} \Gamma_{(a)}(\{p_i\}) - \sum_{a \neq b}^{15} \Gamma_{(a,b)}(\{p_i\})$$
(6)

$$\Gamma_{(a)}(\{p_i\}) = \int \frac{d^4r}{(2\pi)^4} K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2})$$

× $D(q_{a_1})D(q_{a_2})\Gamma(\{p_i\}, a),$
 $\Gamma_{(a,b,)}(\{p_i\}) = \int \frac{d^4r}{(2\pi)^4} K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2})$
× $D(q_{a_1})D(q_{a_2})\Gamma_{(b)}(\{p_i\}, a).$

Lorentz invariants

In practice we work with the total momentum P and four relative momenta p,q,k,l instead of the five particle momenta.

$$q = \frac{p_1 - p_5}{2}, \quad p = \frac{p_2 - p_5}{2}, \quad k = \frac{p_3 - p_5}{2}, \quad l = \frac{p_4 - p_5}{2}.$$
(7)

The amplitude $\Gamma(q, p, k, l, P)$ depends on 15 Lorentz invariants

$$\begin{array}{ll}
q^{2}, & \omega_{1} = q \cdot p, \\
p^{2}, & \omega_{2} = q \cdot k, & \eta_{1} = q \cdot P, \\
p^{2}, & \omega_{3} = q \cdot l, & \eta_{2} = p \cdot P, \\
k^{2}, & \omega_{4} = p \cdot k, & \eta_{3} = k \cdot P, \\
l^{2}, & \omega_{5} = p \cdot l, & \eta_{4} = l \cdot P. \\
P^{2}, & \omega_{6} = k \cdot l,
\end{array}$$
(8)

These can be arranged into two singlets, two quartets and a quintet in S_5 .

Permutation Group S₅

 S_5 consist of 5! = 120 elements and each permutation of an object f_{12345} can be reconstructed from two group elements, a transposition T and a 5 - cycle C.

G.E. and R. D. T., arXiv:2502.17225.

The Cayley graph can be visualized by 24 pentagons, which are connected to each other by transpositions. The members are obtained by two successive chains of the form (C², T², C², T, CT, T).

Permutation Group S₅

For later use, we collect the elements in the first five squares (A, B, C, D, E) into five vectors $f^{(n)}$ with $n = 1, \dots, 5$. Together with the transpositions $Tf^{(n)}$, this yields twelve elements for each vector.

The remaining five squares (F, G, H, I, J) define the vectors $\tilde{f}^{(n)}$ with $n = 1, \dots, 5$. Again, combined with the transpositions $T\tilde{f}^{(n)}$, each vector $\tilde{f}^{(n)}$ defines a closed path with twelve elements.

Permutation Group S₅

The 120 permutations transform under irreducible representations of S_5 and are given by Young diagrams of S_5 .

Raul D. Torres (IST/LIP)

Permutation Group S_5 and five-body systems

One singlet is P^2 and the other

$$S_0 = \frac{1}{5} \left(q^2 + p^2 + k^2 + l^2 - \frac{1}{2} \sum_{i=1}^6 \omega_i \right).$$
(10)

The quintet is given by

$$\mathcal{V} = \begin{bmatrix} \sqrt{\frac{2}{3}} (\omega_1 + \omega_2 - \omega_3 + \omega_4 - \omega_5 - \omega_6) \\ 2\omega_1 - \omega_2 - \omega_3 - \omega_4 - \omega_5 + 2\omega_6 \\ \sqrt{3} (\omega_2 - \omega_3 - \omega_4 + \omega_5) \\ \omega_2 + \omega_3 - \omega_4 - \omega_5 \\ \frac{1}{\sqrt{3}} (2\omega_1 - \omega_2 + \omega_3 - \omega_4 + \omega_5 - 2\omega_6) \end{bmatrix}$$

The two quartets are given by

$$Q_{1} = \begin{bmatrix} q^{2} - p^{2} - \frac{2}{3}v_{4} \\ \frac{1}{\sqrt{3}}(q^{2} + p^{2} - 2k^{2}) - \frac{2}{3}v_{5} \\ \frac{1}{\sqrt{6}}(q^{2} + p^{2} + k^{2} - 3l^{2}) - \frac{2}{3}v_{1} \\ -\frac{1}{\sqrt{10}}\frac{5}{3}(q^{2} + p^{2} + k^{2} + l^{2} - 8S_{0}) \end{bmatrix},$$

$$Q_{2} = \begin{bmatrix} \eta_{1} - \eta_{2} \\ \frac{1}{\sqrt{3}}(\eta_{1} + \eta_{2} - 2\eta_{3}) \\ \frac{1}{\sqrt{6}}(\eta_{1} + \eta_{2} + \eta_{3} - 3\eta_{4}) \\ \frac{1}{\sqrt{10}}(\eta_{1} + \eta_{2} + \eta_{3} + \eta_{4}) \end{bmatrix},$$
(11)

Permutation Group S_n and n-body systems

n	\mathcal{S}_0	P^2	η_i	$p_1^2 \dots p_n^2$	\mathcal{M}	Total	Indep.
2	1	1	1	_	_	3	3
3	1	1	2	2	_	6	6
4	1	1	3	3	2	10	10
5	1	1	4	4	5	15	14
6	1	1	5	5	9	21	18
n	1	1	n-1	n-1	n(n-3)/2	n(n+1)/2	4n - 6

• P^2 is a singlet, and one singlet as the sum $p_1^2 + \cdots + p_n^2$.

- The variables $p_1^2 \cdots p_n^2$ form another $(n p_n)$ 1)-plet.
- n-1 angular variables η_i form an $(n \bullet n(n-3)/2$ gives another multiplet \mathcal{M} . 1)-plet.

Five-body system - dimensional constraint

$$P = \begin{bmatrix} 0\\0\\0\\\bullet\end{bmatrix}, q = \begin{bmatrix} 0\\0\\\bullet\\\bullet\end{bmatrix}, p = \begin{bmatrix} 0\\\bullet\\\bullet\\\bullet\\\bullet\end{bmatrix}, k = \begin{bmatrix} \bullet\\\bullet\\\bullet\\\bullet\\\bullet\end{bmatrix}, l = \begin{bmatrix} \bullet\\\bullet\\\bullet\\\bullet\\\bullet\end{bmatrix}, (12)$$

- $\bullet~n$ four-vectors depend on 4n-6 independent variables.
- \bullet The five vectors only have 14 independent entries and thus only 14 independent Lorentz invariants.
- n-body system with $n \ge 5$ independent four-momenta gives 4n - 6 independent Lorentz invariants (opposed to n(n+1)/2).

- In n = 5 yields one constraint equation.
- The constraint relates all variables.

$$\begin{bmatrix} (\omega_{12} \ \omega_{34} + \omega_{13} \ \omega_{24} + \omega_{14} \ \omega_{23})^2 - q_1^2 \ q_2^2 \ q_3^2 \ q_4^2 \end{bmatrix} P^2 + \sum_i \eta_i^2 \begin{bmatrix} q_j^2 \ q_k^2 \ q_l^2 - q_j^2 \ \omega_{kl}^2 - q_k^2 \ \omega_{jl}^2 - q_l^2 \ \omega_{jk}^2 \end{bmatrix} + 2 \sum_i \left(\eta_i^2 - q_i^2 \ P^2 \right) \omega_{jk} \ \omega_{jl} \ \omega_{kl} + \sum_{i < j} \eta_i \ \eta_j \begin{bmatrix} 2q_k^2 \ (\omega_{il} \ \omega_{jl} - q_l^2 \ \omega_{ij}) + q_l^2 \ \omega_{ik} \ \omega_{jk} \\ + \ \omega_{kl} \ (\omega_{ij} \ \omega_{kl} - \omega_{ik} \ \omega_{jl} - \omega_{il} \ \omega_{jk}) \end{bmatrix}$$
(13)
$$+ P^2 \sum_{i < j} \omega_{ij}^2 \ \left(q_k^2 \ q_l^2 - \omega_{kl}^2 \right) = 0 ,$$

Explicit form of the BSE

- Solutions of two-, three- and four-body systems show that the dependence on the angular variables η_i is usually small or negligible.
- Four-body BSE dynamically generates intermediate two-body poles in the solution process.
- \bullet In a five body there are 10 possible two- and three-body configurations.

We reduce the momentum dependence to S_0 but include two- and three-body poles:

$$\Gamma(p,q,k,l,P) \approx f(\mathcal{S}_0) \sum_{aa'} \mathcal{P}_{aa'},$$
 (14)

with

$$\mathcal{P}_{(12)(345)} = \frac{1}{(p_1 + p_2)^2 + M_M^2} \frac{1}{(p_3 + p_4 + p_5)^2 + M_B^2} \,.$$

May 6, 2025 | 14/28

Explicit form of the BSE

- Procedure requires knowledge of boundstate masses M_M , M_B of the two- and three-body equations in the same approach.
- We employ a dimensionless coupling constant c and mass ratio β via:

$$c = \frac{g^2}{(4\pi m)^2}, \quad \beta = \frac{\mu}{m}$$
 (15)

• Employing tree-level propagators for scalar particles with mass m and a ladder approximation for a boson exchange with mass μ :

$$K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2}) = \frac{g^2}{r^2 + \mu^2},$$

$$D(p) = \frac{1}{p^2 + m^2},$$
(16)

Explicit form of the BSEs

The BSEs turn into eigenvalue equations of the form

$$\lambda_i(P^2)\Psi_i(P^2) = \mathcal{K}(P^2)\Psi_i(P^2),$$
 (17)

where $P^2 \in \mathbb{C}$ is the five-body momentum squared, $\mathcal{K}(P^2)$ is the kernel and the $\Psi_i(P^2)$ are its eigenvectors with eigenvalues $\lambda_i(P^2)$ for the ground (i = 0) and excited states (i > 0).

$$\Gamma(\{p_i\}) = \sum_{a}^{6} \Gamma_{(a)}(\{p_i\}) - \sum_{a \neq b}^{3} \Gamma_{(a,b)}(\{p_i\}).$$

$$(18)$$

Results

n-body BSEs for $\beta = 4$ and different values of coupling c.

Coupling ranges where n-body ground states are possible for different values of β .

Results

Radially excited state masses $M_{i>0}$ for $\beta = 4$ and different values of the coupling c.

Eigenvalues of the *n*-body BSEs $\beta = c = 0.5$. Solid curves are full solutions, dotted singlet approx. and dashed singles \times pole approx.

Results

BSE eigenvalues for $\beta = 0.001$, with c = 1/4 to ensure coexisting solutions for the two-, three-, four- and five-body BSEs.

Results - extra applications with S_5 for five-point functions

 p_{2} p_{3} p_{4} p_{5} p_{5

• Five-point function depends on five incoming momenta with the sum $p_1^{\mu} + \cdots + p_5^{\mu} = 0$. Singlet vanishes and remaining four independent momenta form a quartet:

$$\mathcal{Q} = \begin{bmatrix} p_1^{\mu} - p_2^{\mu} \\ \frac{1}{\sqrt{3}} (p_1^{\mu} + p_2^{\mu} - 2p_3^{\mu}) \\ \frac{1}{\sqrt{6}} (p_1^{\mu} + p_2^{\mu} + p_3^{\mu} - 3p_4^{\mu}) \\ \frac{1}{\sqrt{10}} (p_1^{\mu} + p_2^{\mu} + p_3^{\mu} + p_4^{\mu} - 4p_5^{\mu}) \end{bmatrix} = \begin{bmatrix} p^{\mu} \\ q^{\mu} \\ k^{\mu} \\ l^{\mu} \end{bmatrix}.$$
(19)

• One obtains a singlet $Q \cdot Q$, a quartet $Q \wedge Q$, a quintet $Q \cup Q$ and a sextet $Q \star Q$.

• Five-point functions can define ten Mandelstam variables

$$s_{ij} = (p_i + p_j)^2, \quad X = \frac{\sqrt{3}(s_{ik} - s_{jk})}{s_{ik} + s_{jk} + s_{ij}}, \quad Y = \frac{s_{ik} + s_{jk} - 2s_{ij}}{s_{ik} + s_{jk} + s_{ij}}$$

Intermediate resonances appear at fixed s_{ij} .

Raul D. Torres (IST/LIP)

May 6, 2025 | 20/28

Results - extra applications with S_5 for five-point functions

δ

• Five-gluon vertex general form reads

$$\Gamma^{\mu\nu\alpha\beta\gamma}(p_1\dots p_5) = \sum_{ij} F_{ij}(\dots) \,\tau_i^{\mu\nu\alpha\beta\gamma} \,\mathsf{c}_{abcde}^{(j)} \,. \tag{20}$$

There are four types of color structures as seed elements

$$\begin{aligned} \delta_{ab} f_{cde} , & f_{abr} f_{cds} f_{ers} , & f_{ij} &= \delta_{ij} f_{klm} , \\ \delta_{ab} d_{cde} , & f_{abr} f_{cds} d_{ers} . & d_{ij} &= \delta_{ij} d_{klm} , \end{aligned}$$

$$\begin{aligned} & k < l < m , \\ \end{aligned}$$

- Ten permutations of d_{ii} can be grouped into a singlet, a quartet and a quintent.
- Ten of f_{ii} return an antiquartet and a sextet.
- The seed $f_{abr} f_{cds} f_{ers}$ form a sextet.
- The seed $f_{abr} f_{cds} d_{ers}$ yields an antisinglet and an antiquartet.

Summary

• We developed the five-body Bethe-Salpeter formalism and solve the five-body equation for a scalar model in a ladder truncation.

• We discussed applications of the permutation group S_5 for five-point functions and five-body wave functions.

• The approach developed in this work can be extended to QCD in view of investigating pentaquarks, and work in this direction is underway.

ACKNOWLEDGEMENTS

Thank you!

Collaborators

Gernot Eichmann,

Teresa Peña,

Grants

FCT: CERN/FIS-PAR/0023/2021, FCT: PRT/BD/152265/2021, FWF: 10.55776/PAT2089624, ExoHad: DE-SC0023598.

Backup slides - Three-body equation

The Bethe-Salpeter amplitude $\Gamma(\{p_i\})$ for a three-body system depends on three momenta p_1, p_2, p_3 , whose sum is the total onshell momentum P with $P^2 = -M_B^2$.

$$\Gamma(\{p_i\}) = \sum_{a}^{3} \Gamma_{(a)}(\{p_i\}) .$$

$$\Gamma_{(a)}(\{p_i\}) = \int \frac{d^4r}{(2\pi)^4} K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2}) D(q_{a_1}) D(q_{a_2}) \Gamma(\{p_i\}, a) .$$
(22)

In this care the are three possible two-body kernels $K_a \in \{K_{12}, K_{13}, K_{23}\}$ whose sum does not lead top overcounting in the three-body scattering matrix kernel $T^{(3)}$.

Backup slides - Three-body equation

We furthermore employ a single \times pole approximation

$$\Gamma(q, p, P) \approx f(\mathcal{S}_0) \sum_a \mathcal{P}_a, \qquad \mathcal{P}_{12} = \frac{1}{(p_1 + p_2)^2 + M_M^2},$$
(23)

with M_M the mass of the two-body subsystem or 'diquark', and the singlet variable S_0 is

$$S_0 = \frac{q^2}{3} + \frac{p^2}{4}.$$
 (24)

Backup slides - Four-body equation

In this case there are six possible two-body kernels

$$K_a \in \{K_{12}, K_{13}, K_{14}, K_{23}, K_{24}, K_{34}\}$$
(25)

and three independent double-kernel configurations of the form

$$K_a K_b \in \{K_{12} K_{34}, K_{13} K_{24}, K_{14} K_{23}\}.$$
(26)

The four-body Bethe-Salpeter amplitude $\Gamma(\{p_i\})$ depends on four-momenta $p_1 \dots p_4$, whose sum is the total onshell momentum P with $P^2 = -M_T^2$ (T for 'tetra').

Backup slides - Four-body equation

The four-body equation is the Faddeev-Yakubowsku equation and can be written as

$$\Gamma(\{p_i\}) = \sum_{a}^{6} \Gamma_{(a)}(\{p_i\}) - \sum_{a \neq b}^{3} \Gamma_{(a,b)}(\{p_i\}),$$

$$\Gamma_{(a)}(\{p_i\}) = \int \frac{d^4r}{(2\pi)^4} K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2}) D(q_{a_1}) D(q_{a_2}) \Gamma(\{p_i\}, a),$$

$$\Gamma_{(a,b)}(\{p_i\}) = \int \frac{d^4r}{(2\pi)^4} K(p_{a_1}, q_{a_1}, p_{a_2}, q_{a_2}) D(q_{a_1}) D(q_{a_2}) \Gamma_{(b)}(\{p_i\}, a),$$
(27)

Raul D. Torres (IST/LIP)

Backup slides - Four-body equation

In the four-body case we employ the singlet \times pole approximation

$$\Gamma(q, p, k, P) \approx f(\mathcal{S}_0) \sum_{a} \mathcal{P}_{aa'}, \qquad (28)$$

where the two-body poles for aa' = (12)(34) are given by

$$\mathcal{P}_{(12)(34)} = \frac{1}{(p_1 + p_2)^2 + M_M^2} \frac{1}{(p_3 + p_4)^2 + M_M^2}$$
(29)

and M_M is the mass of the two-body subsystem. The singlet variable S_0 is

$$S_0 = \frac{k^2 + q^2 + p^2}{4}.$$
(30)

Raul D. Torres (IST/LIP)

May 6, 2025 | 28/28