Testing dynamical stabilization of Complex Langevin simulations of QCD

Dénes Sexty University of Graz

Collaborators: Enno Carstensen, Michael Westh Hansen, Michael Mandl, Erhard Seiler, Nucu Stamatescu, ...

ACHT 2025, Budapest, 6th of May. 2025

- 1. Introduction to complex Langevin
- 2. QCD and complex Langevin
- 3. dynamical stabilization

Importance Sampling

We are interested in a system Described with the partition sum:

$$Z = \int D \phi e^{-S} = \operatorname{Tr} e^{-\beta(H - \mu N)} = \sum_{C} W[C]$$

Typically exponentially many configurations, no direct summation possible.

If the Weight is positive, build a Markov chain with the Metropolis algorithm

$$\dots \rightarrow C_{i-1} \rightarrow C_i \rightarrow C_{i+1} \rightarrow \dots$$

Probability of visiting C $p(C) \sim W[C]$

$$p(C) \sim W[C]$$

$$\langle X \rangle = \frac{1}{Z} \operatorname{Tr} X e^{-\beta(H - \mu N)} = \frac{1}{Z} \sum_{C} W[C] X[C] = \frac{1}{N} \sum_{i} X[C_{i}]$$

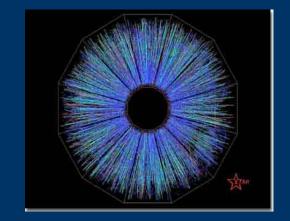
This works if we have $W[C] \ge 0$

Otherwise we have a Sign problem

Sign problems

Real-time evolution in QFT

"strongest" sign problem ϵ



Non-zero density

$$Z = \operatorname{Tr} e^{-\beta(H - \mu N)} = \int DU e^{-S[U]} det(M[U])$$

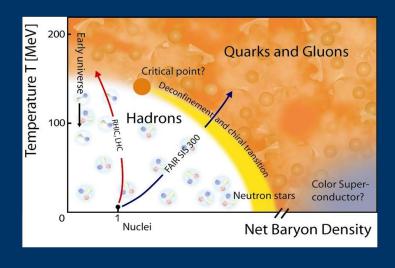
Many systems: Bose gas

XY model

SU(3) spin model

Random matrix theory

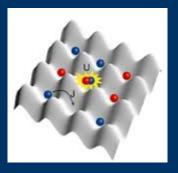
QCD



Theta therm

$$S = F_{\mu\nu} F^{\mu\nu} + i \Theta \epsilon^{\mu\nu\theta\rho} F_{\mu\nu} F_{\theta\rho}$$

Inbalanced Fermi gas



And everything else with complex action

$$w[C] = e^{-S[C]}$$
 $w[C]$ is positive $\leftarrow \rightarrow S[C]$ is real

Langevin Equation (aka. stochatic quantisation)

Given an action S(x)

Stochastic process for x:
$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$$
 Gaussian noise
$$\frac{\langle \eta(\tau) \rangle = 0}{\langle \eta(\tau) \eta(\tau') \rangle = \delta(\tau - \tau')}$$

Random walk in configuration space

Averages are calculated along the trajectories:

$$\langle O \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau)) d\tau = \frac{\int e^{-S(x)} O(x) dx}{\int e^{-S(x)} dx}$$

Numerically, results are extrapolated to $\Delta \tau \rightarrow 0$

Complex Langevin Equation

Given an action S(x)

Stochastic process for x:
$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$$
 Gaussian noise
$$\frac{\langle \eta(\tau) \rangle = 0}{\langle \eta(\tau) \rangle = \delta(\tau - \tau')}$$

$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$$

The field is complexified

real scalar -- complex scalar

link variables:
$$SU(N) \longrightarrow SL(N,C)$$

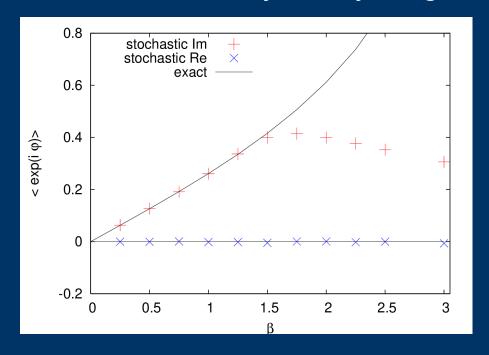
compact non-compact
 $\det(U)=1, \quad U^+ \neq U^{-1}$

Analytically continued observables are calculated along the trajectories:

$$\langle O \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau) + iy(\tau)) d\tau$$
 $\langle x^{2} \rangle_{real} \rightarrow \langle x^{2} - y^{2} \rangle_{complexified}$

$$\frac{1}{Z} \int P_{comp}(x) O(x) dx = \frac{1}{Z} \int P_{real}(x, y) O(x + iy) dx dy ?$$

For nontrivial models CLE may or may not give a correct answer



$$S(\varphi) = i\beta\cos\varphi + i\varphi$$

Do we know if it's correct?

Reasons for incorrect results: slowly decaying distributions (Boundary terms)

different cycles contributing [See talk of Michael Mandl]

non-holomorphic actions

Diagnostic observables: boundary terms

certain non-holomorphic observables, histograms

What can we do if it's incorrect?

Change variables

Use a kernel [See talk of Enno Carstensen]

Use a "regularization" (see below)

Can we apply Complex Langevin to QCD?

Yes, but there are some hurdles along the way:

- 1. respect group manifold
- 2. complexified gauge group is non-compact gauge cooling
- 3. rough lattices gauge cooling inefficient
- 4. Include light fermions
- 5. low beta (low temperature?) system more instable Dynamical stabilization

1st problem: respect group manifold

$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$$

In lattice gauge theory, we have link variables: $U_{\gamma}(x) \in SU(N)$

First idea: use a map

$$U_{\gamma}(x) = U(\phi_i, \theta_j) \quad 0 \le \phi_i < 2\pi, \ 0 \le \theta_j < \pi, \ 1 \le i \le 5, \ 1 \le j \le 3 \text{ for SU}(3)$$

$$\int DU e^{-S(U)} \rightarrow \int d \phi_i d \theta_j H(\phi_i, \theta_j) e^{-S(\phi_i, \theta_j)} d \theta_j$$

⇒ Langevin eq. for
$$\phi_i$$
, θ_j

$$K_i = -\partial_i S + \partial_i \ln H(\phi_i, \theta_i)$$

Con: Too cumbersome (already for real Langevin)

Map has singular points

Pro(?): potentially different complexifications

1st problem: respect group manifold

$$\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)$$

In lattice gauge theory, we have link variables:

$$U_{\gamma}(x) \in SU(N)$$

Better idea: use the map $U_{\gamma}(x) = e^{i\lambda_a \alpha_a} U_0$ locally, only for the update eq.

[Batrouni, Kawai, Rossi (1985)]

update eq.:
$$U(\tau + \Delta \tau) = \exp[i \lambda_a (K_a \Delta \tau + \eta_a \sqrt{2 \Delta \tau})] U(\tau)$$

Drift term:
$$K_a = D_a S(U) = \left| \frac{\partial}{\partial \alpha_a} S(e^{i\lambda_a \alpha_a} U) \right|_{\alpha_a = 0}$$
 Left derivative

Complexification: $K_a \in \mathbb{C}$ $U \in SU(N) \rightarrow U \in SL(3, \mathbb{C})$

Unitarity norm: distance from the real manifold

$$N_U = Tr(UU^{\dagger} - 1)^2$$
 $\approx \sum Im \phi^2$ for scalars

2nd problem: Gauge degrees of freedom also complexify

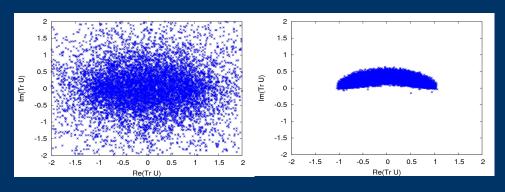
 $SL(N, \mathbb{C})$ is a non-compact group

In SU(N) simulations, gaugefixing is not needed, as gauge freedom is a compact group.

In Complex Langevin, this gives a non-compact group to be explored by the simulations.

Gauge fixing

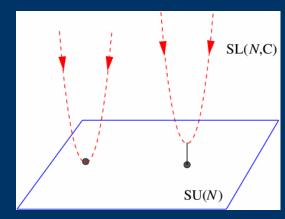
SU(2) one-plaquette



[Berges, Sexty (2008)]

Gauge cooling

Decrease $\,N_{U}\,$ using gauge transformations



[Seiler, Sexty Stamatescu (2013)]

Heavy Quark QCD at nonzero chemical potential (HDQCD)

Hopping parameter expansion of the fermion determinant Spatial hoppings are dropped — unmovable quarks

Det
$$M(\mu) = \prod_{x} \det(1 + C P_{x})^{2} \det(1 + C' P_{x}^{-1})^{2}$$
 $S = S_{W}[U_{\mu}] + \ln \operatorname{Det} M(\mu)$
 $P_{x} = \prod_{\tau} U_{0}(x + \tau a_{0})$ $C = [2 \kappa \exp(\mu)]^{N_{\tau}}$ $C' = [2 \kappa \exp(-\mu)]^{N_{\tau}}$

CLE study using gaugecooling

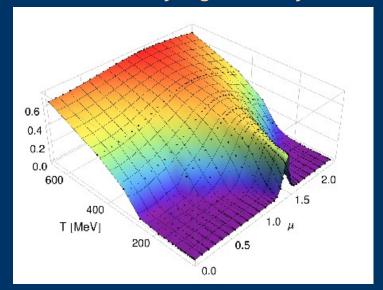
[Seiler, Sexty, Stamatescu (2013)]

At large lattice spacings
Gauge cooling inefficient

Use small lattice spacings

(Use large N_t for small temperatures)

Phase diagram mapped out [Aarts, Attanasio, Jaeger, Sexty (2016)]



CLE and full QCD with light quarks

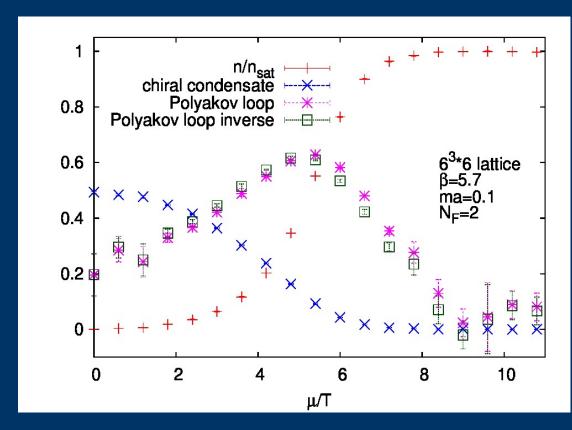
$$Z = \int DU e^{-S} \det M$$

Fermionic drift:

$$K_F = D_a \ln \det M = \operatorname{Tr}(M^{-1}D_a M)$$

Exact drift terms only for tiny Lattices.

Partial reduction of the matrix allows also small lattices



[Sexty (2014)]

Large lattices: noisy estimator

$$\operatorname{Tr}(M^{-1}D_aM) = \langle s^+M^{-1}D_aMs \rangle$$

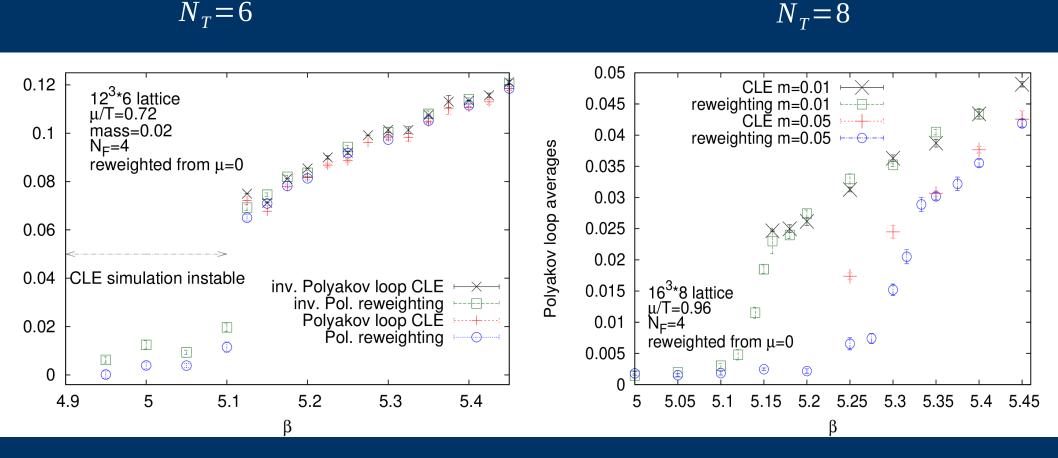
 $s = \text{noise field}$

One CG solution per update step

Direct simulations of full QCD at high densities possible for the first time

At low beta, CLE simulation instable

 $N_T = 6$



[Fodor, Katz, Sexty, Török (2015)]

Breakdown prevents simulations in the confined phase for staggered fermions with N_T = 4,6,8

Stay above the deconfinement temperature for now

Pressure of the QCD Plasma using CLE

[Sexty (2019)]

If we can simulate at $\mu > 0$

$$\Delta \left| \frac{p}{T^4} \right| = \frac{p}{T^4} (\mu = \mu_q) - \frac{p}{T^4} (\mu = 0) = \frac{1}{V T^3} \left| \ln Z(\mu) - \ln Z(0) \right|$$

$$\ln Z(\mu) - \ln Z(0) = \int_0^{\mu} d\mu \frac{\partial \ln Z(\mu)}{\partial \mu} = \int_0^{\mu} d\mu n(\mu)$$

$$n(\mu) = \langle \operatorname{Tr}(M^{-1}(\mu) \partial_{\mu} M(\mu)) \rangle$$

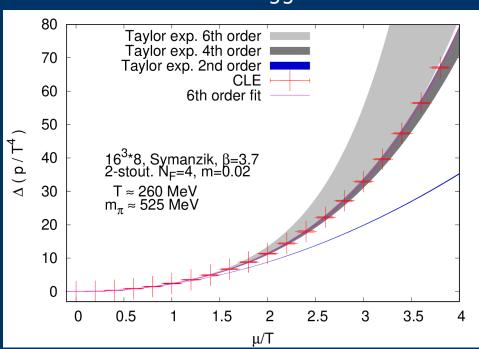
Using CLE it's enough to measure the density

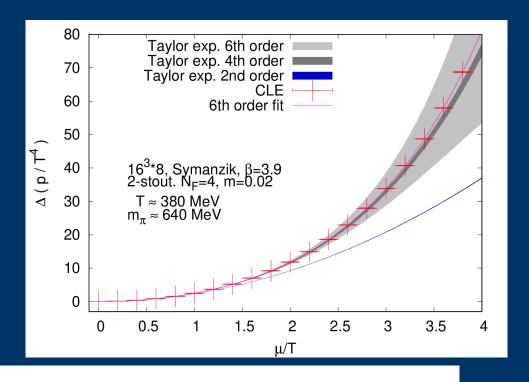
– much cheaper than Taylor expansion

Pressure with CLE and improved action

[Sexty (2019)]

In deconfined phase Symanzik gauge action stout smeared staggered fermions





β	c_2 Taylor exp.	c_4 Taylor exp.	c_6 Taylor exp.	c_2 CLE	c_4 CLE	c_6 CLE
3.7	2.206 ± 0.009	0.156 ± 0.016	0.016 ± 0.013	2.33 ± 0.1	0.13 ± 0.02	0.002 ± 0.001
3.9	2.312 ± 0.007	0.150 ± 0.007	0.001 ± 0.005	2.36 ± 0.04	0.14 ± 0.01	0.002 ± 0.001

Good agreement at small $\,\mu$ CLE calculation is much cheaper

further interesting quantities: Energy density, quark number susceptibility, ...

Dynamical Stabilization

[Attanasio, Jäger (2018)]

Prevent growth of Unitarity norm

"Soft cutoff" in the imaginary directions of SL(3,C)

New term in drift

$$K_{x,y}^a \rightarrow K_{x,y}^a + i \alpha_{DS} M_x^a$$

$$M_{x}^{a} = i b_{x}^{a} \left(\sum_{c} b_{x}^{c} b_{x}^{c} \right)^{3}$$
 $b_{x}^{a} = Tr \left[\lambda^{a} \sum_{v} U_{x,v} U_{x,v}^{+} \right]$

New term is SU(3) gauge invariant (not SL(3,C)) Not a derivative of an action Not holomorphic Gauge cooling is still used with DS on top α_{DS} controls strength of attraction to SU(3)

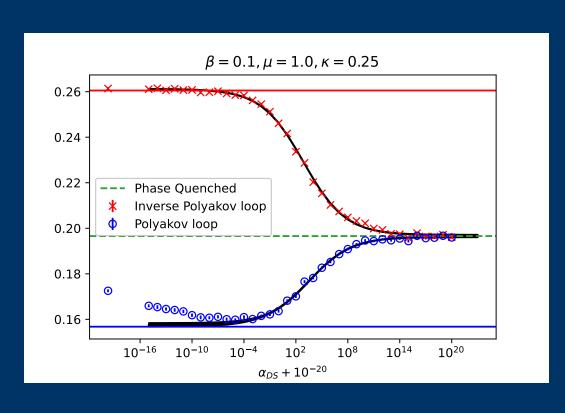
Dynamical Stabilization of a toy model

[Hansen, Sexty (2024)]

$$S = -(\beta + \kappa e^{\mu}) \operatorname{Tr} U - (\beta + \kappa e^{-\mu}) \operatorname{Tr} U^{-1}$$

one Polyakov line of QCD

Complex Langevin + dynamical stabilization



large
$$\alpha_{DS}$$

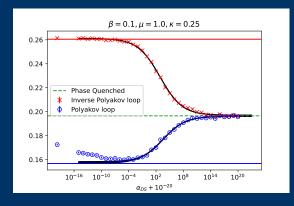
system confined to real manifold

phasequenched simulation
$$Z_{PQ} = \int DU \left| e^{-S(U)} \right| = \int DU \, e^{-\operatorname{Re} S(U)}$$

fit function:
$$f(\alpha_{DS}) = A + \frac{B - A}{1 + C \alpha_{DS}^D}$$

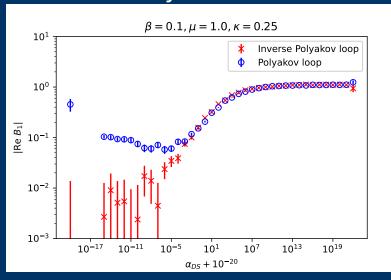
extrapolated to $\alpha_{DS} = 0$

Dynamical Stabilization of a toy model



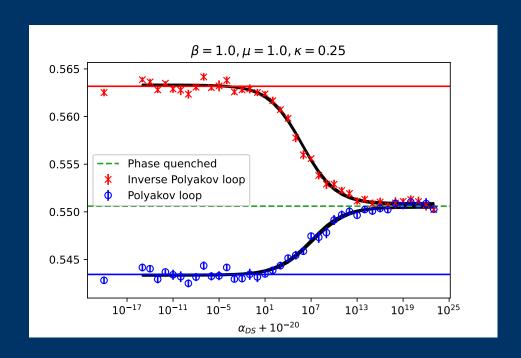
Fit range?

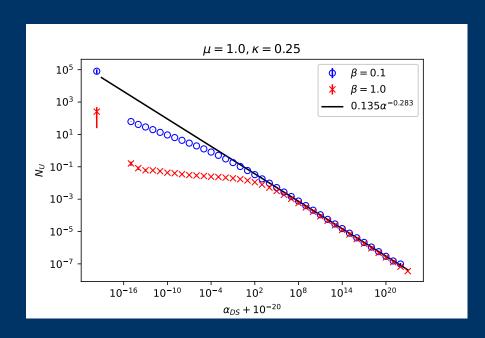
Boundary terms:



"large temperature"

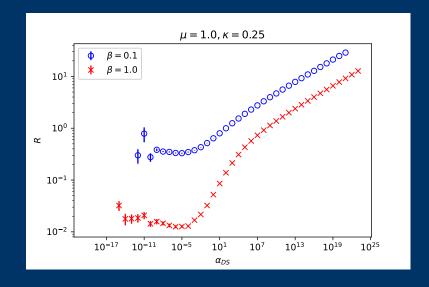
No dynamical stabilization needed Fit still works





stronger stabilization drift squeezes distribution to real manifold

$$N_u \sim \alpha^{-1/4}$$



Relatively small contribution to drift

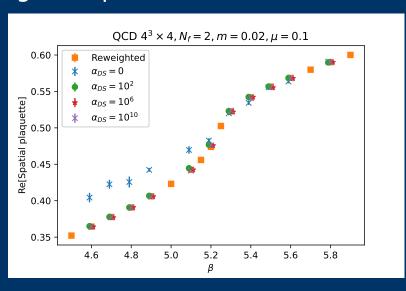
Except for high $\alpha_{\rm DS}$ where system is close to phasequenched

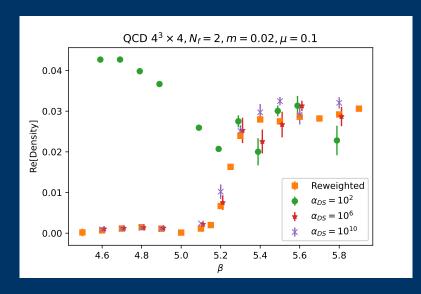
$$R = \frac{\text{Norm of DS drift}}{\text{Norm of drift from action}}$$

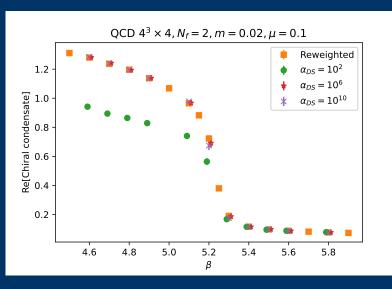
Dynamical Stabilization in QCD

[Hansen, Sexty (2024)]

At low temperatures stabilization needed high temperatures, naive simulation is fine







From far away, dyn.stab. seems to correct give results also at low T

Let's take a closer look!

Two versions of Dynamical stabilization

Original proposal

[Jager, Attanasio (2018)]

$$K_{xv}^a \rightarrow K_{xv}^a - i \alpha_{DS} b_x^a (b_x^c b_x^c)^3$$

$$b_x^a = \operatorname{Tr} \left(\lambda_a \sum_{v=1}^4 U_{xv}^+ U_{xv} \right)$$

Mixes force of all 4 link variables attached to a site "Mixing version"

Modified proposal

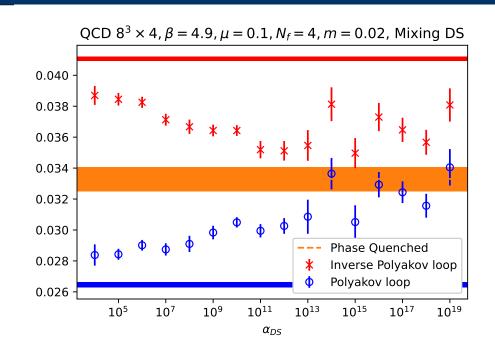
$$K_{xv}^a \rightarrow K_{xv}^a - i \alpha_{DS} b_{xv}^a (b_{xv}^c b_{xv}^c)^3$$
 $b_{xv}^a = \text{Tr} \left(\lambda_a U_{xv}^+ U_{xv} \right)$

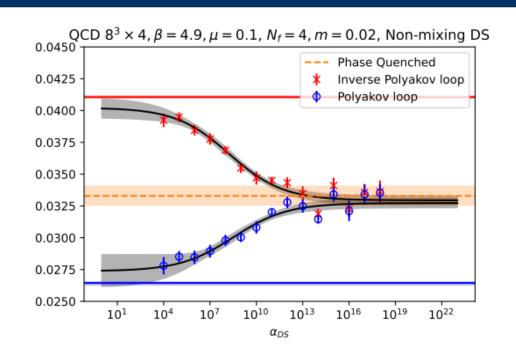
All 4 links have a separate stabilizing force

"Non-Mixing version"

Polyakov loop in QCD

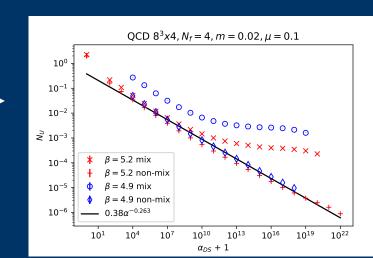
Low temperature





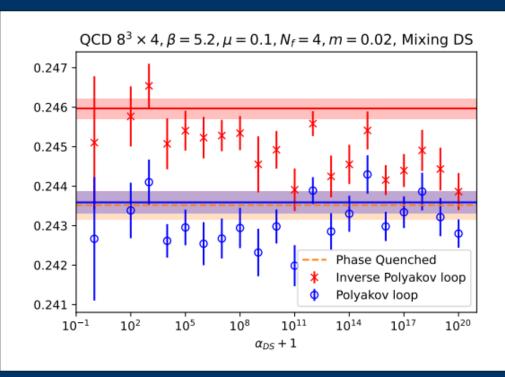
Non-mixing force has stronger effect Strong stabilization drives to phasequenched

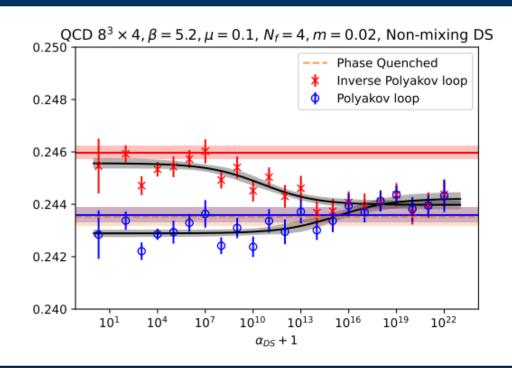
Sigmoid fit work reasonably well



Polyakov loop in QCD

High temperature





Non-mixing force has stronger effect

Strong stabilization still drives to phasequenched

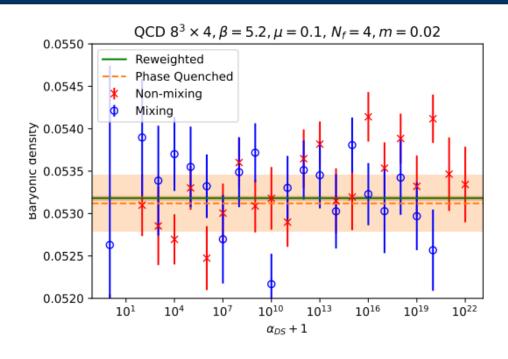
Dynamic stabilization was not really needed

Fermionic observable: density

low temperature

QCD $8^3 \times 4$, $\beta = 4.9$, $\mu = 0.1$, $N_f = 4$, m = 0.02Reweighted 0.014 Phase Quenched Non-mixing 0.012 Mixing Baryonic density 800.0 800.0 0.004 0.002 0.000 1013 10²² 1010 1016 10⁴ 10⁷ 10¹⁹ 10¹ α_{DS}

high temperature



low temperature: Sigmoid fit gives a reasonable extrapolation

High temperature: dynamical stabilization is not needed

Summary

Dynamical stabilization = soft cutoff in imaginary directions

Toy model: changing DS strength
Interpolate between full model and phasequenched
Sigmoid fit -- extrapolate to zero DS force

QCD test
mixing and non-mixing version
high temperature: stabilization unneeded
sigmoid fit and extrapolation works reasonably

Also: find a Kernel using Machine Learning, Reformulate, etc.

TODO: can we get to thermodynamics at physical quark masses and low temperatures?

Mapping out the phase transition line

[Scherzer, Sexty, Stamatescu (2020)]



Follow the phase transition line starting from $\mu = 0$

Using Wilson fermions

Fixed lattice spacing and spatial vol. $N_{\scriptscriptstyle f}$ scan

Lattice spacing: a = 0.065 fm

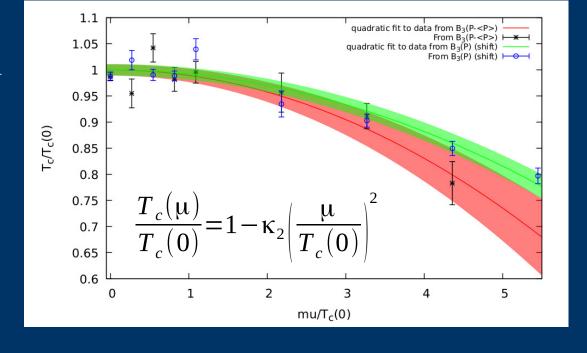
Pion mass: $m_{\pi} = 1.3 \text{ GeV}$

Volumes: $8^3, 12^3, 16^3$

Finite size effects large

Consistent results

Can follow the line to quite high μ/T

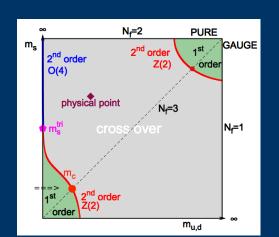


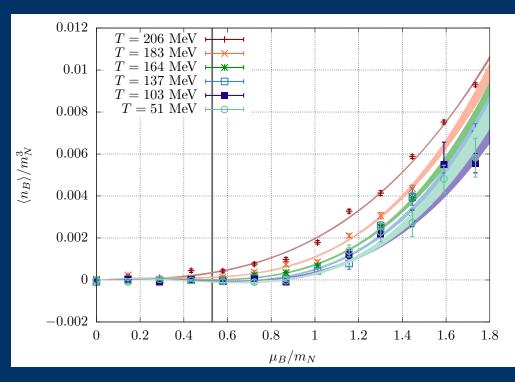
$$\kappa_2 \approx 0.0012$$

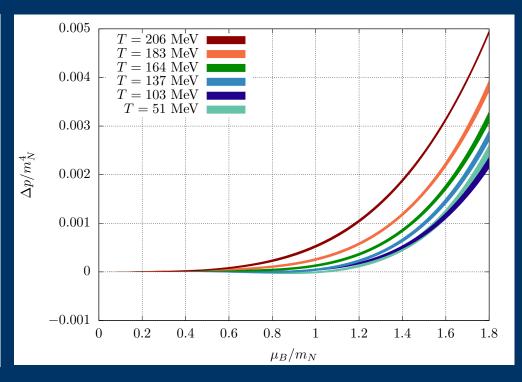
In literature For physical pion mass κ_2 =0.015

Open questions

Possible for lighter quarks?
Finite size scaling?
Where is the upper right corner of Columbia plot?
Critical point nearby?







density pressure

Plaquette action + Wilson fermions $m_{\pi} \approx 480 \,\mathrm{MeV}$

Simulations also at low temperatures - using dynamical stabilization

Long runs with CLE

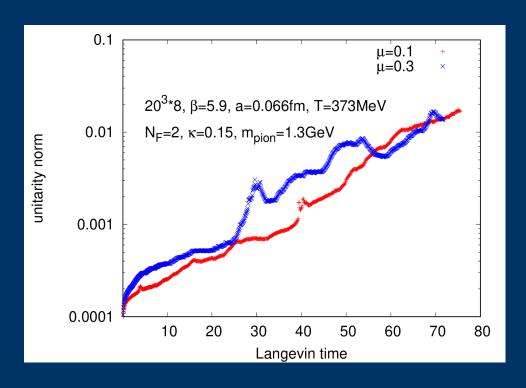
Unitarity norm has a tendency to grow slowly (even with gauge cooling)

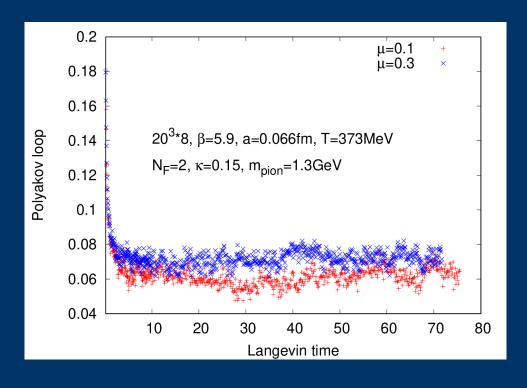
$$UN = \sum_{x,y} Tr(U_{xy}U_{xy}^{+} - 1)$$

Runs are cut if it reaches ~ 0.1

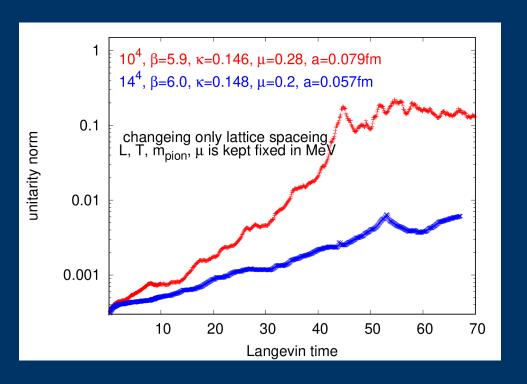
Thermalization usually fast

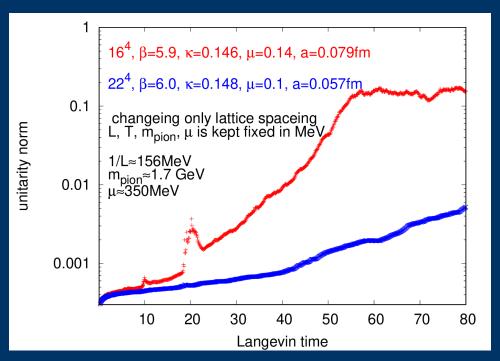
- might be problematic close to critical point or at low T





Getting closer to continuum limit





Test with Wilson fermions Increase β by 0.1 - reduces lattice spacing by 30% change everything else to stay on LCP

behavior of Unitarity norm improves autocorrelation time decreases as lattice gets finer