Learning Kernels for Real-Time Complex Langevin

Enno Carstensen

6. May 2025

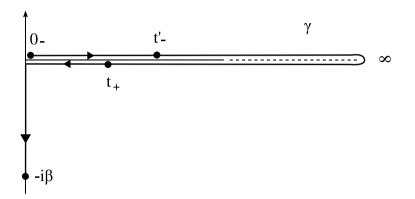
Real time evolution in QFT

A simple test case

Machine learning kernels

- Calculating time-separated correlators
- Useful for both equilibrium and non-equilibrium systems:
 - Phase transitions
 - Baryogenesis
 - Gravitaional wave production
 - Heavy-Ion collisons

The Schwinger-Keldysh formalism in equilibrium



- Perturbative expansion
- Naive lattice approaches lead to strong sign problem
- Mitigations: combine Lattice with:
 - Classical-Statistical
 - Schwinger-Dyson
 - Contour deformation
 - Complex Langevin

The complex Langevin equation

Stochastic differential equation

- Action S
- Degrees of freedom ϕ
- Gaussian noise η with $\mathrm{Var}(\eta)=2$
- Langevin time τ

$$\begin{split} & \frac{\partial \phi}{\partial \tau} = -\frac{\delta S}{\delta \phi} + \eta \\ & \phi_{\tau+\epsilon} = \phi_{\tau} - \epsilon \frac{\delta S}{\delta \phi} \Big|_{\tau} + \sqrt{\epsilon} \eta \end{split}$$

Real time evolution in QFT

A simple test case

Machine learning kernels

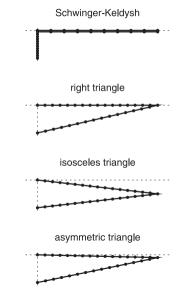
0+1-dimensional scalar field theory

$$\mathcal{L} = \left(\partial_t \phi(t)\right)^2 + m^2 \phi^2(t) + \frac{\lambda}{4!} \phi^4(t)$$

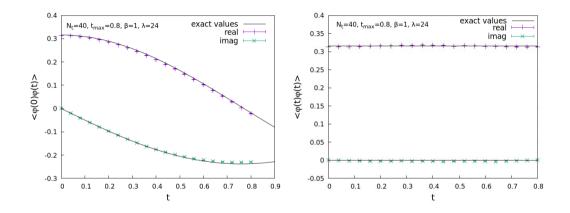
- Conceptionally and computationally simple
- Also known as: anharmonic oscillator
- Analytically solvable by diagonalizing the Hamiltonian
- Observables:
 - Unequal-time correlator: oscillations
 - Equal-time correlator: constant
- **2** parameters: mass m = 1 and coupling $\lambda = 24 \rightarrow$ strongly coupled

Lattice setup

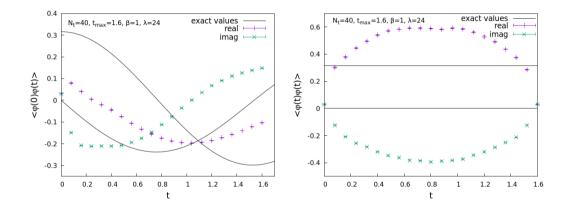
- asymmetric triangle contour
- skew = 0.1%
- $\bullet \ N_t = 40$
- \blacksquare adaptive step size ϵ
- \blacksquare maximum $\epsilon = 10^{-5}$



The anharmonic oscillator in action



Wrong convergence for larger t_{max}



Real time evolution in QFT

A simple test case

Machine learning kernels

Any arbitrary holomorphic function

 $K(\phi,\tau,\ldots)$ with $K=H^T H$

- Does not change result (in real Langevin)
- Can change convergence behavior
- Optimal kernel can fix wrong convergence (in complex case)

• Constant kernel $\implies \frac{\delta K}{\delta \Phi} = 0$

$$\begin{split} \frac{\partial \Phi}{\partial \tau} &= -K \frac{\delta S}{\delta \Phi} + \sqrt{K} \eta + \frac{\delta K}{\delta \Phi} \\ \Delta \phi_i &= -\epsilon (H^T)^j_i H^k_j \frac{\partial S}{\partial \phi^k} + \sqrt{\epsilon} H^j_i \eta_j \end{split}$$

Learning optimized kernels with gradient descent

- Introduced in Alvestad et al., 2022, arXiv:2211.15625
- Optimize kernel according to a loss function *L*

$$\Delta K_{ij} = -r \cdot \frac{\partial L(\Phi,K)}{\partial K_{ij}}$$

- \blacksquare Descend kernel along loss function gradient with rate r
- Use trained kernel to solve system

Which loss function to use?

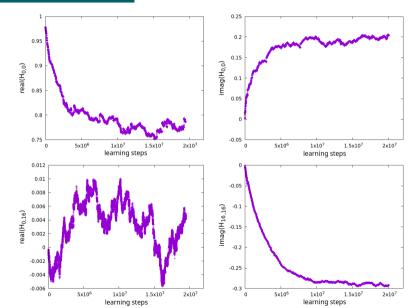
- Ideally some function that quantifies
 - "wrongness of results"
- Incorporate as much prior information as possible (2211.15625)
- Or: Use unitarity norm U(Φ) as cheap proxy
 (2310.08053, 2309.06103)
- \blacksquare Evaluated on next-step field Φ'

$$\begin{split} U(\Phi) &= \sum_{i}^{N} \Im\mathfrak{m}(\phi_{i})^{2} \\ L(\Phi,K) &= U(\Phi'(\Phi,K)) \\ &= U(\Phi + \Delta\Phi(\Phi,K)) \end{split}$$

How to train your kernel

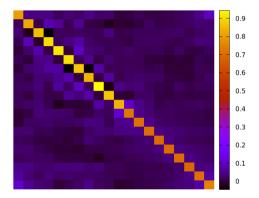
- Kernel starts out at identity
- One training step consists of:
 - Themalization for 10 100 Langevin time
 - Averaging the loss function gradient for 0.1-1 Langevin time
 - Applying the gradient to the kernel with learning rate $r = 10^{-4} 10^{-3}$
 - Rescale kernel such that sum of squares is fixed
- Repeat for $10^6 10^7$ times
- \blacksquare Reset Φ every $\sim 10^5$ training steps to combat runaway feedback effects
- Only $N_t = 20$ since gradient descent is very expensive

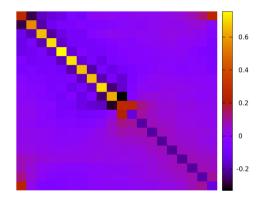
Kernel training in action



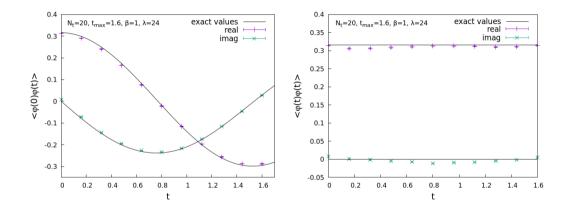
17/23

What does the kernel learn?

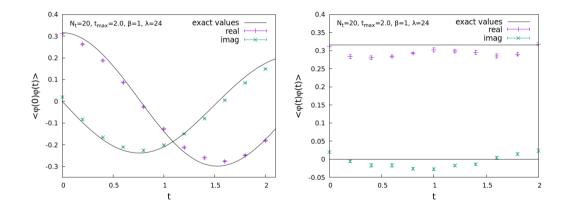




Kernel improves real time extent considerably



Limit of constant kernel is $t\approx 2\beta$



Next step: Linear kernel

• Field dependent kernel with N^3 parameters:

$$H_i^j(\Phi) = a_i^{jk}\phi_k + b_i^j$$

- More parameters and field dependence should lead to better results (?)
- Overfitting with simple loss function (?)
- Easily expandable to polynomial kernels

Neural net: When polynomial kernels are not enough

- Neural network can approximate any function (Universal approximation theorem)
- Holomorphicity and universal approximation at the same time are difficult (if not impossible) Voigtlaender, 2012.03351
- Other considerations:
 - $N\, {\rm inputs}\, (\Phi)$, N^2 outputs (K)
 - Different possible topologies
 - Different activation functions (can lead to non-universality)

$$N: \mathbb{C}^n \to \mathbb{C}^{n \times n} : \Phi \mapsto K = N(\Phi)$$

- Kernels can improve real time extent
- \blacksquare Constant kernels hit barrier at $t_{\rm max}\approx 2\beta$
- Linear field dependend kernels should reach higher times
- Using neural networks is possible, but brings problems