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Handout version*

• This handout is a slightly modified version of the talk given at ACHT 25: some 
additional comments have been added to give context to the slides.  

• Slides with a title marked with an asterisk (*) were not part of the original talk.



Motivation

• QCD at finite density: 
• Heavy-ion collisions 

• Neutron stars 

• Real-time evolution of QFTs: 

• Transport coefficients 

• Non-equilibrium properties
?
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These systems have a sign problem!



Motivation*

• Lattice studies of (e.g.) quantum chromodynamics (QCD) at finite chemical 
potential or quantum field theories in real time are examples of theories that 
suffer from a sign (or complex-action) problem: the path integral measure is not 
real and positive definite, which prevents the straightforward application of 
conventional lattice methods based on importance sampling.  

• Our method of choice to tackle the sign problem is the complex Langevin 
approach.
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The complex Langevin equation

• * probability density .  

• Does it obey                                                                                                         ?

⟹ P(x, y, τ)

lim
τ→∞ ∫ dxdy 𝒪(x + iy)P(x, y, τ) = ∫ dx𝒪(x)e−S(x)

Klauder	’83;	Parisi	‘83

Complex Langevin equation

dz
dτ

= −
∂S(z)

∂z
+ η(τ)
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Complex Langevin equation

dz
dτ

= −
∂S(z)

∂z
+ η(τ)

drift term

Gaussian noise: 
⟨η(τ)⟩ = 0

⟨η(τ)η(τ′ )⟩ = 2δ(τ − τ′ )

z = x + iy



The complex Langevin equation*

• The complex Langevin equation is a stochastic differential equation describing 
the evolution of complexified degrees of freedom in an auxiliary time dimension. 

• For a theory with a single real degree of freedom , the complex Langevin 
approach introduces the complexified variable  and studies its 
evolution in the Langevin time . This evolution gives rise to a probability 
density  in the complex plane. 

• The question that is posed in the last bullet point of the previous slide is 
whether the observables that the complex Langevin approach provides (l.h.s.) 
can reproduce the desired results (r.h.s.). 

x
z = x + iy

τ
P
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The wrong convergence problem

• Complex Langevin simulations can give wrong 
results despite converging properly. 

• Example: ,  . 

• Correct convergence only for  .  

• In general, we do not know if results are correct.

S(z) =
λ
4

z4 λ = e
iπl
6

| l | ≤ 2
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The wrong convergence problem*

• Complex Langevin simulations can give wrong results despite apparently 
converging to a reasonable equilibrium distribution. In the simple model 
considered here, one can compare with exact results to assess the convergence 
properties. In general, however, there is no simple a-priori way to tell whether 
results are correct or not.  

• On the previous slide, the numbers in the plot represent different values of the 
integer .l
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How to restore correct convergence?

• May introduce kernel into Langevin equation: 

• For real dynamics: leaves equilibrium distribution unchanged. 

• Alters the probability distribution .P(x, y, τ)

Kernelled complex Langevin equation

dz
dτ

= −K(z)
∂S(z)

∂z
+

∂K(z)
∂z

+ K(z)η(τ)

4

Parisi,	Wu	’81;	Söderberg	‘88



How to restore correct convergence?*

• In order to restore correct convergence, one may introduce a so-called kernel 
into the complex Langevin equation. It essentially represents a non-trivial 
diffusion term. Apart from having to be holomorphic, its form is in principle 
arbitrary.  

• While for real actions the introduction of a kernel leaves the stationary 
(equilibrium) distribution invariant and, thus, the physics unchanged, for 
complex actions the distribution will — in general — change. In the case of 
wrong convergence, this is, of course, desirable. 

• For this talk, we assume the kernel to not depend on .z
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• Example:  ,   ,   . 

• Kernel can restore correct convergence. 

• Want: Correctness criterion.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

∂z
∂τ

= −K
∂S(z)

∂z
+ K η

Complex Langevin evolution with a kernel

∂z
∂τ

= −K
∂S(z)

∂z
+ K η
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Okamoto	et	al.	’89
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B𝒪(z)(Y) = ⟨Θ (Y − |z |) L𝒪(z)⟩

• Formal argument for correctness relies on fast decay of , such that one can 
integrate by parts without appearance of boundary terms. 

• Can measure boundary terms:  

P𝒪

Boundary terms
Aarts	et	al.	’11;	Scherzer	et	al.	‘19
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B𝒪(z)(Y) = ⟨Θ (Y − |z |) L𝒪(z)⟩

• Formal argument for correctness relies on fast decay of , such that one can 
integrate by parts without appearance of boundary terms. 

• Can measure boundary terms:  

• Can infer incorrect solutions from non-vanishing boundary terms. 

• Cannot infer correct solutions from vanishing boundary terms.

P𝒪

Boundary terms
Aarts	et	al.	’11;	Scherzer	et	al.	‘19
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Boundary terms*

• Measuring boundary terms (as a function of the cutoff  on the magnitude of ) 
is a common way to investigate the convergence properties of a complex 
Langevin simulation.  

• In practice, one studies the -dependence of  and extrapolates to . 
If there is a plateau at a non-zero value (or no plateau at all), one concludes that 
boundary terms are non-zero and the obtained complex Langevin results are 
incorrect. The converse, unfortunately, is not true, however. An example of this 
is seen on the previous two slides, where for certain values of the kernel 
boundary terms vanish but the results are still incorrect.

Y z

Y ℬ𝒪(z) Y → ∞
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• Integration paths connecting zeros of  . 

• Example:  . 

• Three independent cycles,  is the relevant one. 

• Vanishing boundary terms only imply that result is 
linear combination of integration cycles: 

ρ(z)

ρ(z) = e− z4
4

γ1
ω1

ω2

ω3 ω4

ω5 ω6

Integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi
Salcedo,	Seiler	’19

7

Witten	‘11



Integration cycles*

• The fact that the complex Langevin evolution can produce incorrect results 
despite vanishing boundary terms can be explained by a theorem by L. Salcedo 
and E. Seiler:  

• Vanishing boundary terms only guarantee that the complex Langevin results are 
a (complex) linear combination of observables computed along the 
independent integration cycles of the theory.  

• In general, of course, neither the integration cycles nor the observables are 
known. For our simple model, however, we can compute the coefficients via a 
least-squares fit and study their dependence on the kernel (see next slide).
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• Kernel can favor certain cycles. 

• Fits are unreliable in the presence of  
boundary terms. 

• Proven only for a single degree of freedom.

Kernels and integration cycles

⟨𝒪⟩CL =
3

∑
i=1

ai ⟨𝒪⟩γi

8

Salcedo	’93

Hansen,	M.M.,	Seiler,	Sexty	‘25



Kernels and integration cycles*

• A kernel — in some sense — gives rise to rotations in the space of integration 
cycles: for a proper choice of kernel we can project out the contributions from 
the (desired) real integration cycle . Other choices of kernel result in different 
linear combinations of cycles. 

• We obtain reasonable fit results only for those kernels for which there are no 
boundary terms. This is in perfect agreement with the Salcedo—Seiler theorem. 

• Since the theorem was proven only for a single degree of freedom, we have 
performed a numerical study of its validity in two dimensions (see the next 
slide).

γ1
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• . 

•  has 8 zeros but there are only  
2 independent integration cycles. 

• Example: , . 

•   

S(z1, z2) =
λ
4

(z2
1 + z2

2)2

e−S(z1,z2)

λ = e
5iπ
6 K = e− iπm

24

Integration cycles in higher dimensions
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⟨𝒪⟩CL = a1 ⟨𝒪⟩γ1
+ a2 ⟨𝒪⟩γ2

Hansen,	M.M.,	Seiler,	Sexty	‘25



Integration cycles in higher dimensions*

• Our results provide striking evidence for the validity of the Salcedo—Seiler 
theorem beyond one dimension as all our two-dimensional results are in perfect 
agreement with its predictions.  

• Note that the situation on the previous slide even appears to be somewhat 
simpler than in one dimension as there are only two independent integration 
cycles now. The number of cycles, however, depends on the coupling between 
the degrees of freedom in a non-trivial way (see next slide).
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• Consider more general interactions:  

 . 

• Number of independent integration  
cycles depends on .

S(z1, z2) =
λ
4

(z4
1 + z4

2 + a z2
1z2

2)

a

Breaking  symmetryO(2)
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Hansen,	M.M.,	Seiler,	Sexty	‘25



• In addition to vanishing boundary terms, one should also require 

• for all polynomials . 

• This ensures correct convergence.

p(z)

A new correctness criterion

11

⟨p(z)⟩CL ≤ ℬ(p)

ℬ(p) := C∥p∥S =
∫ ∞

−∞
dz e− S(z)

2

∫ ∞
−∞

dz e−S(z)
sup
z∈ℝ

p(z) e− S(z)
2
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⟨p(z)⟩CL ≤ ℬ(p)

ℬ(p) := C∥p∥S =
∫ ∞

−∞
dz e− S(z)

2

∫ ∞
−∞

dz e−S(z)
sup
z∈ℝ

p(z) e− S(z)
2

⟨p̃(z)⟩CL
!
≤ ℬ(p̃) p̃(z) =

λ
4

z4 −
λ

2
z2,  ,  S(z) =

λ
4

z4 λ = e
5iπ
6 K = e− iπm

24



A new correctness criterion*

• As boundary terms are insufficient to detect unwanted integration cycles, one 
would like to establish a stronger correctness criterion. 

• A candidate for such a criterion is given by the bounds shown on the previous slide. 
Of course, they are only of limited practical use as one cannot check the bounds for 
all polynomials. However, as we also show, one can use the criterion and a certain 
educated guess  for a polynomial in order to exclude certain results. While this 
does not yet guarantee the results on the plateau around  to be correct, it 
proves that the results on all other plateaus are necessarily wrong, without having 
to compute the coefficients  or exact results for all observables.

p̃(z)
m = 10

ai
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Summary & Outlook
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• CL promising approach for systems with a complex-action problem.

• Wrong convergence due to boundary terms or unwanted integration cycles. 

• Can in principle be fixed by kernels. 
• How to construct them? 
• How to verify convergence? New criterion might be helpful.

• Outlook: Kernels and role of integration cycles in realistic theories?
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• Example:  ,   ,   . 

• Here, we show histograms of  in the complex  
plane for different values of the kernel parameter  

.

S(z) =
λ
4

z4 λ = e
5iπ
6 K = e− iπm

24

z

m

Complex Langevin evolution with a kernel*

m = 0
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Contact*

• For any questions/discussion, please do not hesitate to contact the author via 
michael.mandl@uni-graz.at .

mailto:michael.mandl@uni-graz.at

