

Scaling of the elastic pp cross-section

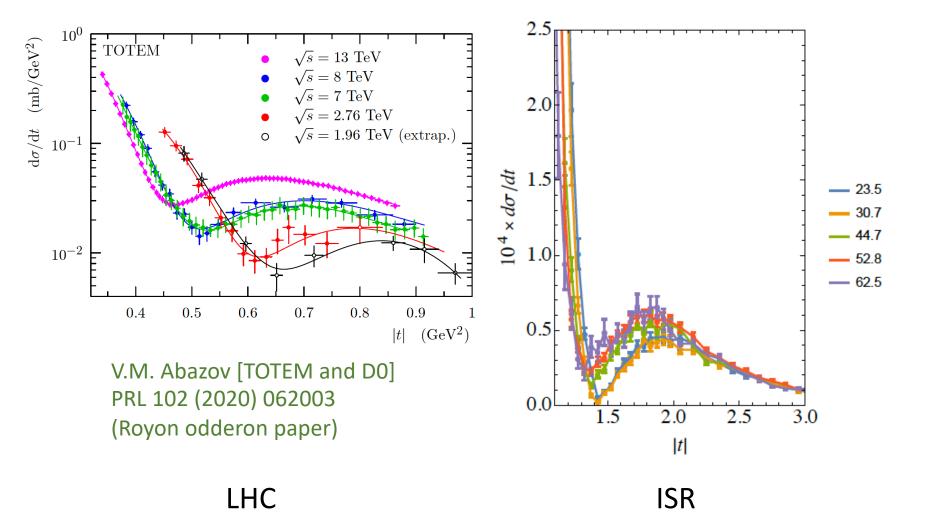
Michał Praszałowicz (Jagiellonian University, Krakow)

ACHT Workshop, May 5–7, 2025 Lágymányos Campus, Eötvös Loránd University, Budapest

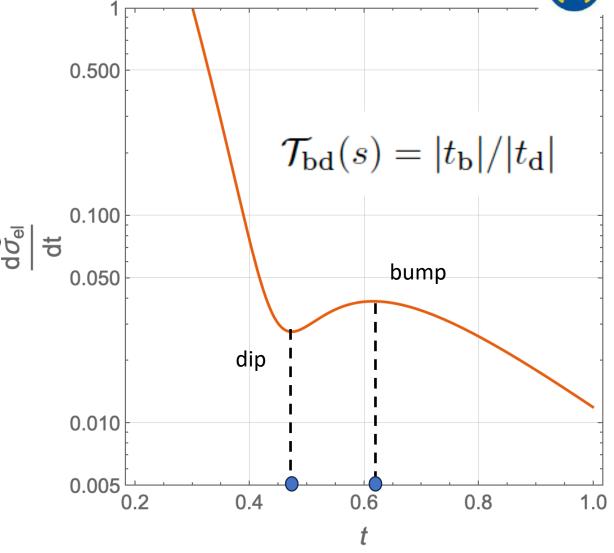
Scaling laws of elastic proton-proton scattering differential cross sections Cristian Baldenegro (Rome U.), Michal Praszalowicz (Jagiellonian U.), Christophe Royon (Kansas U.), Anna M. Stasto (Penn State U.) Phys.Lett.B 856 (2024) 138960 • e-Print: 2406.01737 [hep-ph]

Geometric scaling of elastic pp cross section at the LHC Michal Praszalowicz (Jagiellonian U.) • e-Print: 2504.18841 [hep-ph]

Differential elastic cross-sections



Bump/Dip behaviour



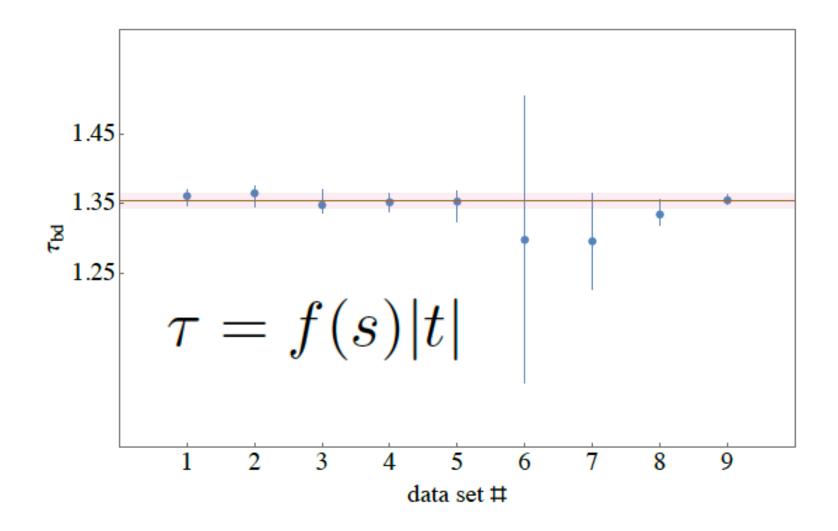
An observation

Phys.Lett.B 856 (2024) 138960

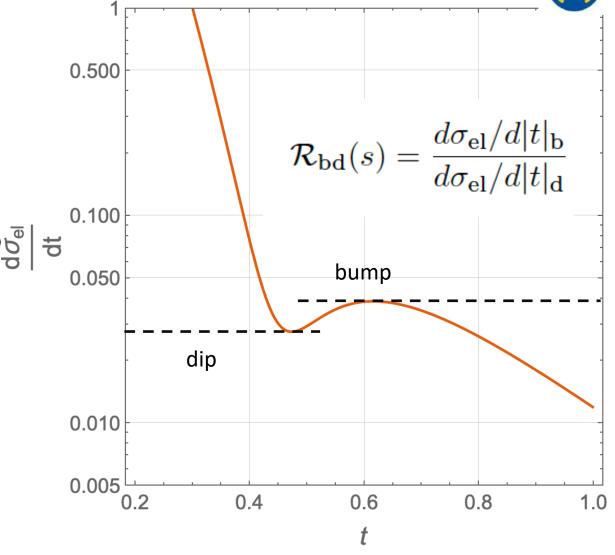
$\mathcal{T}_{\rm bd}(s) = |t_{\rm b}|/|t_{\rm d}|$

	#	W	dip		bump		ratios	
			$\left t\right _{\mathrm{d}}$	error	$\left t ight _{ m b}$	error	$t_{ m b}/t_{ m d}$	error
[V]	9	13.00	0.471	$+0.002 \\ -0.003$	0.6377	$+0.0006 \\ -0.0006$	1.355	$+0.008 \\ -0.005$
[TeV]	8	8.00	0.525	$+0.002 \\ -0.004$	0.700	$+0.010 \\ -0.008$	1.335	$^{+0.021}_{-0.016}$
LHC	7	7.00	0.542	$^{+0.012}_{-0.013}$	0.702	$+0.034 \\ -0.034$	1.296	$+0.069 \\ -0.069$
	6	2.76	0.616	$+0.001 \\ -0.002$	0.800	$+0.127 \\ -0.127$	1.298	$+0.206 \\ -0.206$
	5	62.50	1.350	$+0.011 \\ -0.011$	1.826	$+0.016 \\ -0.039$	1.353	$+0.016 \\ -0.029$
ISR [GeV]	4	52.81	1.369	$+0.006 \\ -0.006$	1.851	$+0.014 \\ -0.018$	1.352	$^{+0.012}_{-0.014}$
	3	44.64	1.388	$+0.003 \\ -0.007$	1.871	$+0.031 \\ -0.015$	1.348	$^{+0.023}_{-0.011}$
	2	30.54	1.434	$+0.001 \\ -0.004$	1.957	$+0.013 \\ -0.028$	1.365	$+0.010 \\ -0.020$
	1	23.46	1.450	$+0.005 \\ -0.004$	1.973	$^{+0.011}_{-0.018}$	1.361	$^{+0.009}_{-0.013}$

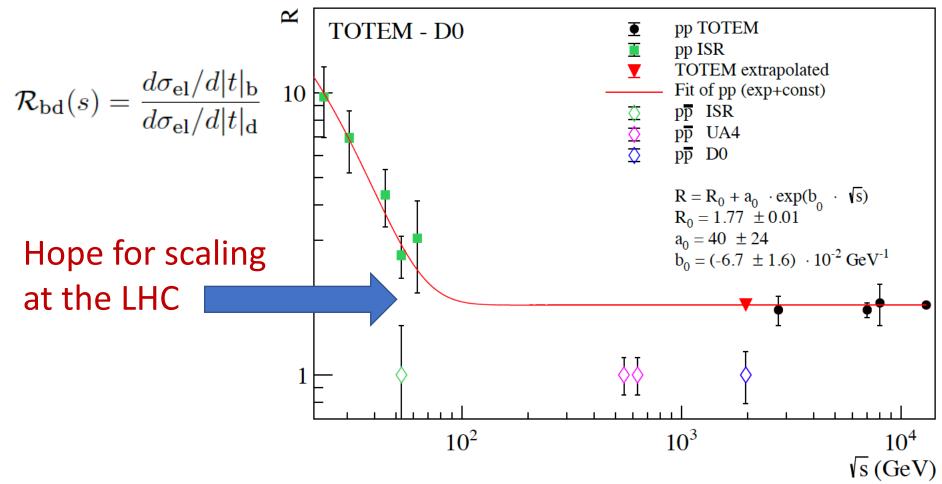
An observation



Bump/Dip be<u>haviour</u>



Bump/Dip behaviour



V.M. Abazov [TOTEM and D0] PRL 102 (2020) 062003 (Royon odderon paper)

ISR - a bit of history

Nuclear Physics B59 (1973) 231-236 North-Holland Publishing Company

GEOMETRIC SCALING, MULTIPLICITY DISTRIBUTIONS AND CROSS SECTIONS

J DIAS DE DEUS

The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Received 8 March 1973

Abstract From a geometric picture of hadrons as extended objects we arrive at some universal features of high energy collisions. In this approach the mean multiplicity, as a function of s and the KNO scaling function are universal and asymptotically the ratio $\sigma_{elastic}/\sigma_{total}$ is expected to be the same for all processes

Cross-sections

Impact parameter space (Barone, Predazzi):

$$\begin{split} \sigma_{\mathrm{el}} &= \int d^{2}\boldsymbol{b} \left[1 - e^{-\Omega(s,b) + i\chi(s,b)} \right]^{2}, \\ \sigma_{\mathrm{tot}} &= 2 \int d^{2}\boldsymbol{b} \operatorname{Re} \left[1 - e^{-\Omega(s,b) + i\chi(s,b)} \right], \\ \sigma_{\mathrm{inel}} &= \int d^{2}\boldsymbol{b} \left[1 - \left| e^{-\Omega(s,b)} \right|^{2} \right]. \end{split}$$

Geometric scaling

$$\Omega(s,b) = \Omega\left(b/R(s)\right)$$

Opacity is a function of one varible, and *R*(*s*) grows with energy. Changing variable

$$oldsymbol{b}
ightarrow oldsymbol{B} = oldsymbol{b}/R(s)$$

$$\sigma_{\text{inel}} = R^2(s) \int d^2 \boldsymbol{B} \left[1 - \left| e^{-\Omega(B)} \right|^2 \right]$$

$\begin{aligned} & \int d^2 \boldsymbol{b} \, \left| 1 - e^{-\Omega(s,b) + i\chi(\boldsymbol{y},b)} \right|^2, \\ & \sigma_{\text{tot}} \, = \, 2 \, \int d^2 \boldsymbol{b} \, \operatorname{Re} \left[1 - e^{-\Omega(s,b) + i\chi(\boldsymbol{y},b)} \right], \end{aligned}$

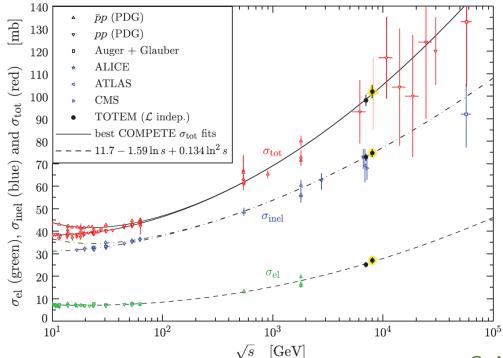
$$\sigma_{\text{inel}} = \int d^2 \boldsymbol{b} \left[1 - \left| e^{-\Omega(s,b)} \right|^2 \right].$$

Immediate consequences $\sigma_{\rm el} = R^2(s) \int d^2 B |1 - e^{-\Omega(B)}|^2$ $\sigma_{\rm tot} = 2R^2(s) \int d^2 B \operatorname{Re} \left[1 - e^{-\Omega(B)}\right]$ $\sigma_{\rm inel} = R^2(s) \int d^2 B \left[1 - |e^{-\Omega(B)}|^2\right]$

If we neglect χ (indeed ρ parameter is small), then all cross-sections have the same energy dependence.

Scaling at the LHC?

	elastic	inelastic	total	ρ
ISR	$W^{0.1142\pm0.0034}$	$W^{0.1099\pm0.0012}$	$W^{0.1098\pm0.0012}$	0.02 - 0.095
LHC	$W^{0.2279\pm0.0228}$	$W^{0.1465\pm0.0133}$	$W^{0.1729\pm0.0163}$	0.15 - 0.10



$$\begin{split} T_{\rm el}(s,t) &= \int d^2 \boldsymbol{b} \, e^{-i \, \boldsymbol{b} \boldsymbol{q}} T_{\rm el}(s,b) \\ &= \frac{1}{2} \int_0^\infty db^2 T_{\rm el}(s,b) \int_0^{2\pi} d\varphi e^{-i b q \cos \varphi} \\ &= \pi \int_0^\infty db^2 T_{\rm el}(s,b) J_0(bq). \end{split}$$

$$s\sigma_{\rm tot}(s) = 2\,{\rm Im}\,\tilde{T}_{\rm el}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of $\sigma_{\rm tot}$

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2$$

$$s\sigma_{\rm tot}(s) = 2\,{\rm Im}\,\tilde{T}_{\rm el}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of $\sigma_{\rm tot}$

$$\sigma_{\rm tot}(s) \sim R^2(s)$$

Nuclear Physics B71 (1974) 481-492

SCALING LAW FOR THE ELASTIC DIFFERENTIAL CROSS SECTION IN pp SCATTERING FROM GEOMETRIC SCALING*

A.J. BURAS and J. DIAS de DEUS

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen ϕ , Denmark

Received 6 December 1973

Abstract: Plots of $(1/\sigma_{in}^2)d\sigma_{el}/d|t \equiv \Phi(\tau, s)$ as a function of $\tau \equiv |t| \sigma_{in}$ are shown to scale in the NAL-ISR energy region. Such scaling is shown to be a consequence of geometric scaling for the inelastic overlap function $G_{in}(\beta = \pi b^2/\sigma_{in})$ in the limit $\rho = \text{Re}A/\text{Im}A \rightarrow 0$ and in the case of $\sigma_{in} \sim (|ns|^2)$ is equivalent to the scaling proposed by Auberson, Kinoshita and Martin. A possible relation to the KNO multiplicity scaling is indicated.

$$\tau = \sigma_{\text{inel}}(s) |t| = R^2(s) |t| \times \text{const.}$$

Vol. B9 (1978)

ACTA PHYSICA POLONICA

No 2

DIPS, ZEROS AND LARGE |t| BEHAVIOUR OF THE ELASTIC AMPLITUDE

BY J. DIAS DE DEUS*

Physics Department, University of Wuppertal, Germany and CFMC-Instituto Nacional de Investigação Científica, Lisboa, Portugal

AND P. KROLL

Physics Department, University of Wuppertal

(Received September 9, 1977)

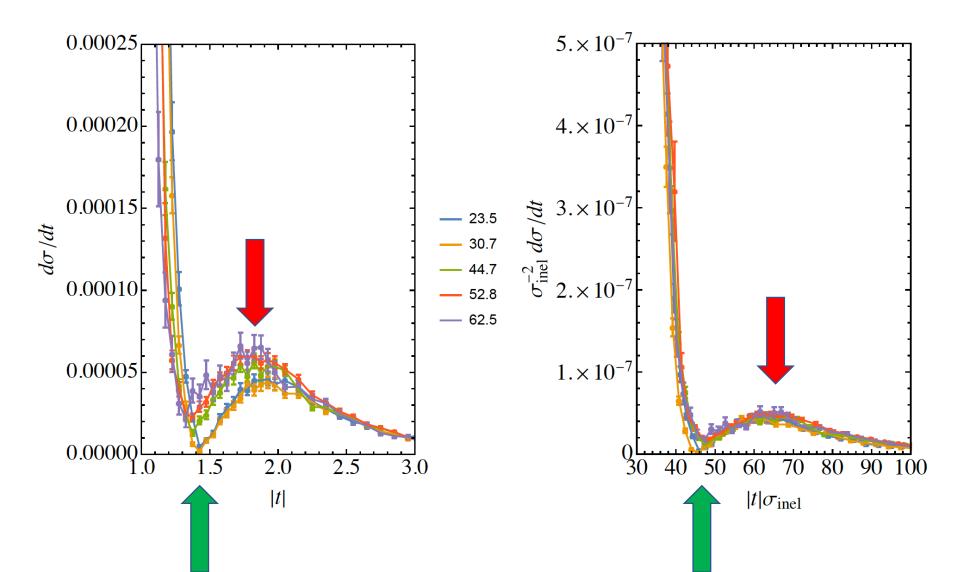
 $\sigma_{\rm tot}(s) \sim R^2(s)$

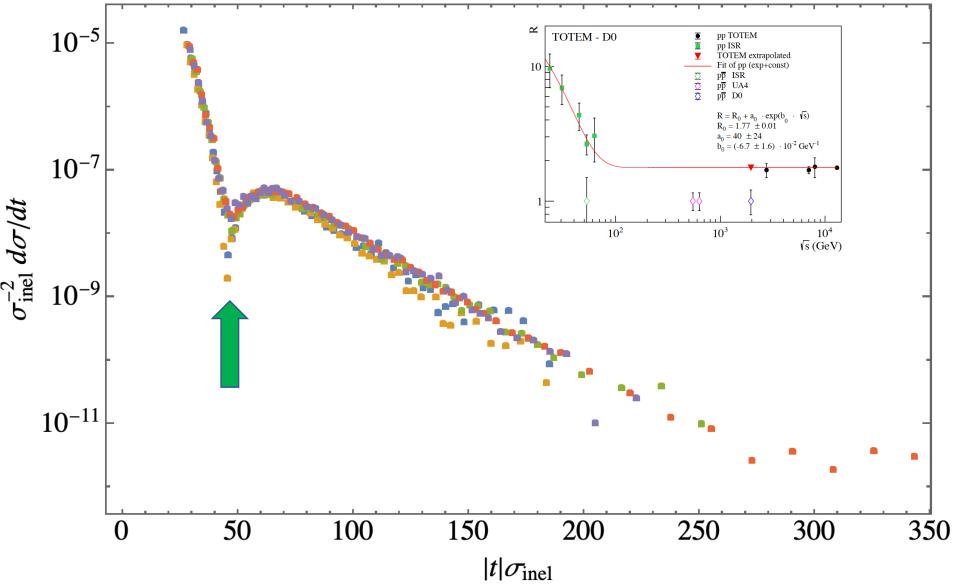
$$\tau = \sigma_{\text{inel}}(s) |t| = R^2(s) |t| \times \text{const.}$$

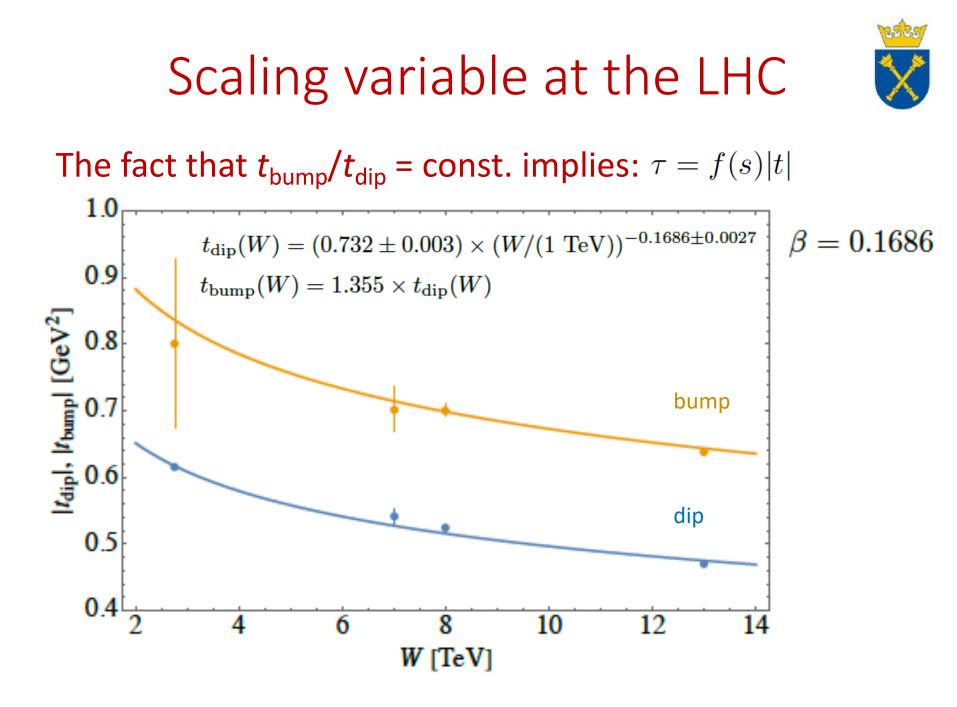
$$\begin{aligned} \frac{d\sigma_{\rm el}}{d|t|} &\sim \left| \int_{0}^{\infty} db^2 A_{\rm el}(b^2, s) J_0\left(b\sqrt{|t|}\right) \right|^2 \\ &= \left| \sigma_{\rm inel}(s) \int_{0}^{\infty} d\left(b^2/\sigma_{\rm inel}(s)\right) A_{\rm el}(b^2/\sigma_{\rm inel}(s)) J_0\left(\sqrt{\tau} b/\sqrt{\sigma_{\rm inel}(s)}\right) \right|^2 \\ &= \left| \sigma_{\rm inel}^2(s) \left| \int_{0}^{\infty} dB^2 A_{\rm el}(B^2) J_0\left(B\sqrt{\tau}\right) \right|^2 \\ &= \left| \sigma_{\rm inel}^2(s) \Phi^2(\tau) \right|. \end{aligned}$$

Geometric scaling at the ISR $\tau = \sigma_{inel}(s) |t| = R^2(s)|t| \times const.$

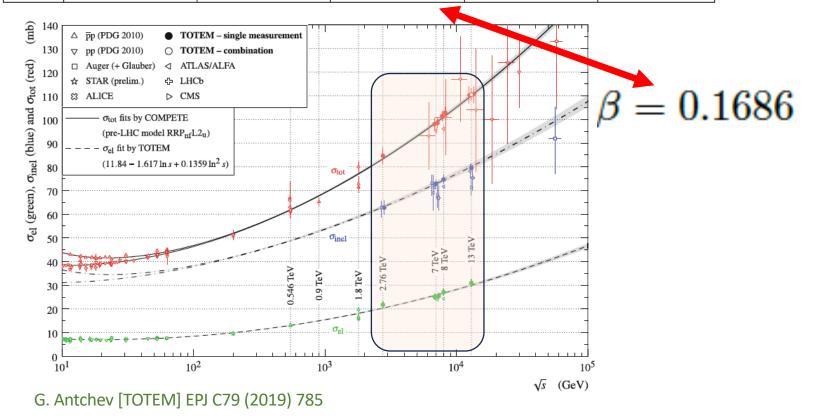
$$\frac{1}{\sigma_{\text{inel}}^2(s)} \frac{d\sigma_{\text{el}}}{d|t|}(s,t) = \Phi^2(\tau)$$



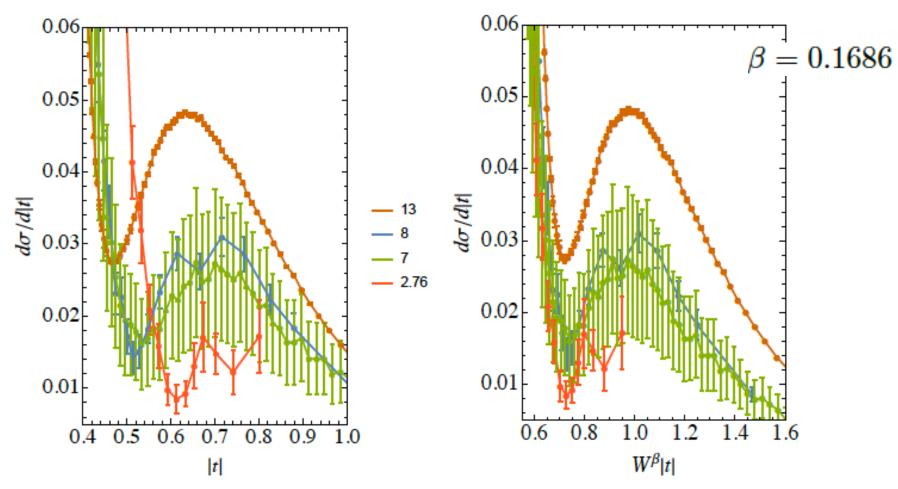




	elastic	inelastic	total	$\frac{\text{elastic}}{\text{inelastic}}$	ρ
ISR	$W^{0.1142\pm0.0034}$	$W^{0.1099\pm0.0012}$	$W^{0.1098\pm0.0012}$	$W^{0.0043\pm0.0036}$	0.02 - 0.095
LHC	$W^{0.2279\pm0.0228}$	$W^{0.1465\pm0.0133}$	$W^{0.1729\pm0.0163}$	$W^{0.0814\pm0.0264}$	0.15 - 0.10



Scaling at the LHC – first step



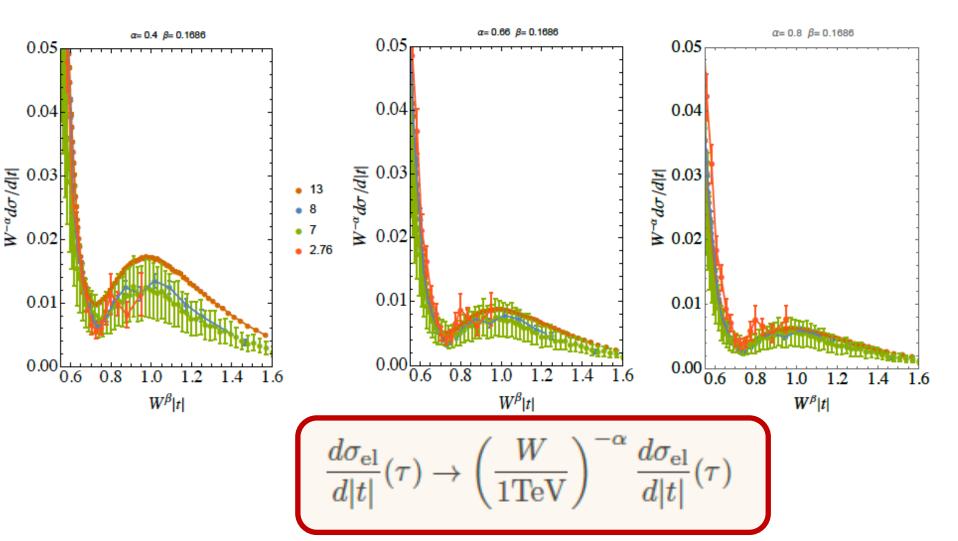
Bump and dip positions are superimposed. Now we have to superimpose bump and dip values.

Scaling at the LHC – second step

 $\alpha = 0.4$

0.66

0.8



$$s\sigma_{\rm tot}(s) = 2\,{\rm Im}\,\tilde{T}_{\rm el}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of $\sigma_{\rm tot}$

$$\sigma_{\rm tot}(s) \sim R^2(s)$$

$$s\sigma_{\text{tot}}(s) = 2 \operatorname{Im} \tilde{T}_{el}(s, 0)$$

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2$$

Construct amplitude that exhibits GS, gives correct energy dependence of $\sigma_{\rm tot}$ and satisfies crossing

$$\tilde{T}_{\rm el}(u,t) \simeq \tilde{T}_{\rm el}(-s,t) = \tilde{T}_{\rm el}^*(s,t)$$

$$\tilde{T}_{\rm el}(s,\tau) = isR^2(-is)\Phi\left[\left|t\right|R^2(-is)\right]$$

Identifying Real and Imaginary parts

Use rapidity: $y = \ln s$ observe $-is = e^{y-i\pi/2}$ and expand

$$R^{2}(-is) \rightarrow R^{2}\left(y - i\frac{\pi}{2}\right) \simeq R^{2}(y) - i\frac{\pi}{2}\frac{dR^{2}(y)}{dy}$$

As a result, one gets:

 $\operatorname{Im} \tilde{T}_{\mathrm{el}}(s,\tau) = sR^{2}(y)\Phi[\tau]$ $\operatorname{Re} \tilde{T}_{\mathrm{el}}(s,\tau) = s\frac{\pi}{2}\frac{dR^{2}(y)}{dy}\frac{d}{d\tau}\left(\tau\Phi[\tau]\right)$

Identifying Real and Imaginary parts

Use rapidity: $y = \ln s$ observe $-is = e^{y-i\pi/2}$ and expand

$$R^{2}(-is) \rightarrow R^{2}\left(y - i\frac{\pi}{2}\right) \simeq R^{2}(y) - i\frac{\pi}{2}\frac{dR^{2}(y)}{dy}$$

As a result, one gets:

 $\operatorname{Im} \tilde{T}_{\mathrm{el}}(s,\tau) = sR^{2}(y)\Phi[\tau]$ $\operatorname{Re} \tilde{T}_{\mathrm{el}}(s,\tau) = s\frac{\pi}{2}\frac{dR^{2}(y)}{dy}\frac{d}{d\tau}\left(\tau\Phi[\tau]\right)$

ho(y) =		$LR^2(y)/dy$
P(g)	2	$R^2(y)$

parameter free prediction!

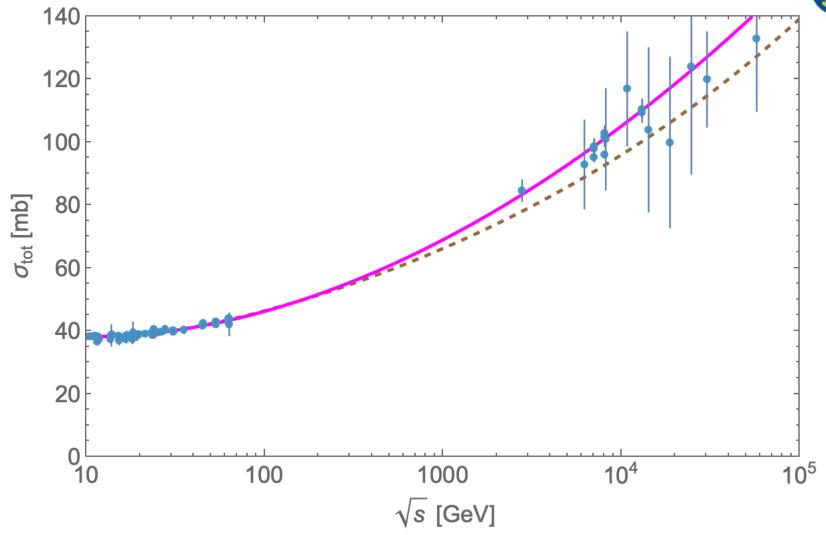
Parametrizations of sigma_tot

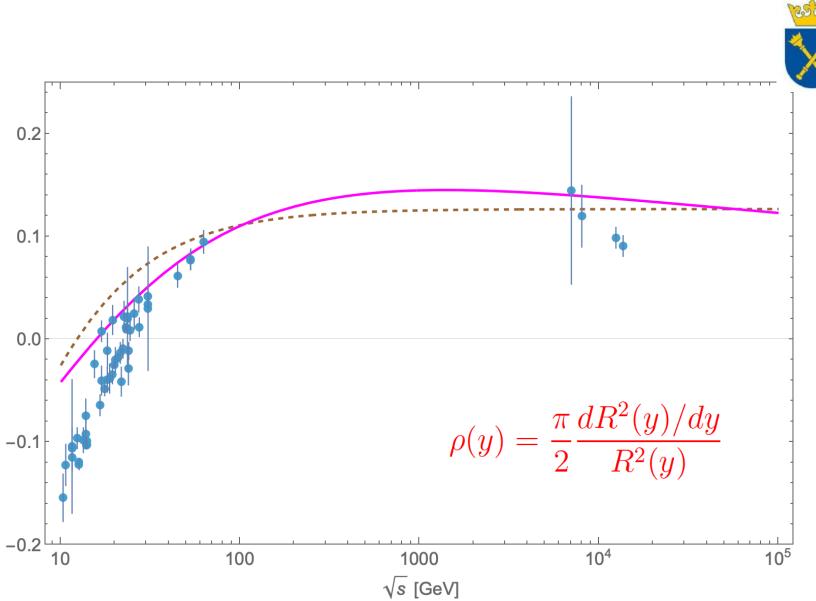
COMPETE@PDG2010

$$\sigma_{\text{tot}}^{\text{PDG}}(s) = Z + C \ln^2 \left(\frac{s}{s_0}\right) + Y_1 \left(\frac{s}{s_1}\right)^{-\eta_1} - Y_2 \left(\frac{s}{s_1}\right)^{-\eta_2}$$

Donnachie & Landshoff (1992)

$$\sigma_{\rm tot}^{\rm DL}(s) = A\left(\frac{s}{s_1}\right)^{\alpha} + B\left(\frac{s}{s_1}\right)^{\beta}$$





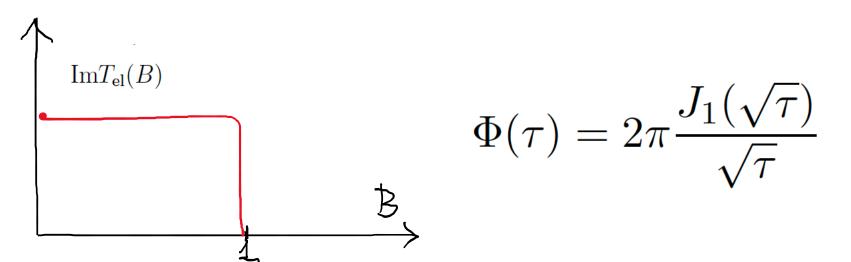
Q

Dips and bumps

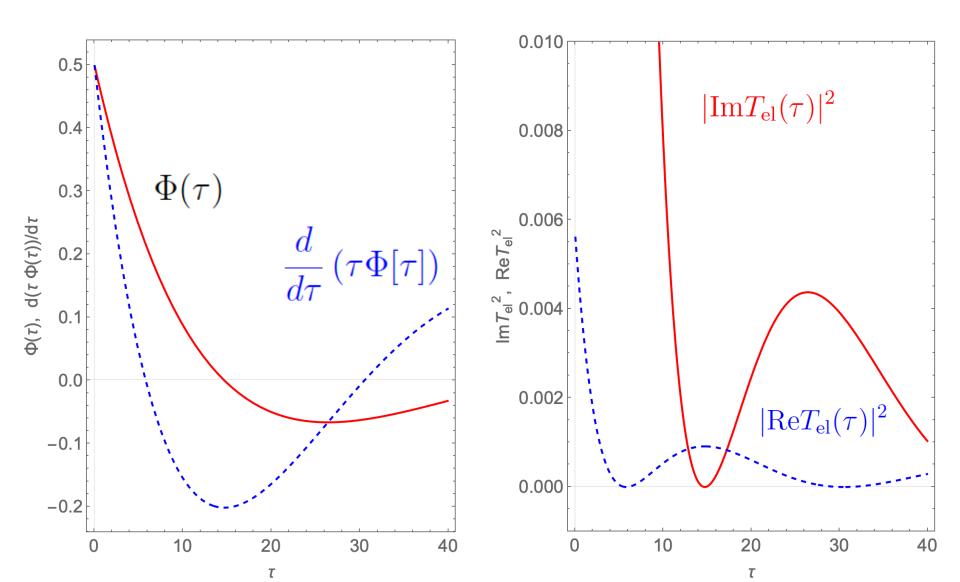
Function $\Phi[\tau]$ has a zero, which corresponds to a dip

$$\mathrm{Im}\tilde{T}_{\mathrm{el}}(\tau) = 2\pi s R^2(s) \int_0^\infty dB^2 \mathrm{Im}T_{\mathrm{el}}(B) J_0(B\sqrt{\tau})$$

For a hard disc one can compute this integral analytically



Dips and Bumps



2

Dips and bumps

$$\Phi[\tau_{\rm dip}] = 0 \to \operatorname{Im} \tilde{T}_{\rm el}(s, \tau_{\rm dip}) = 0$$

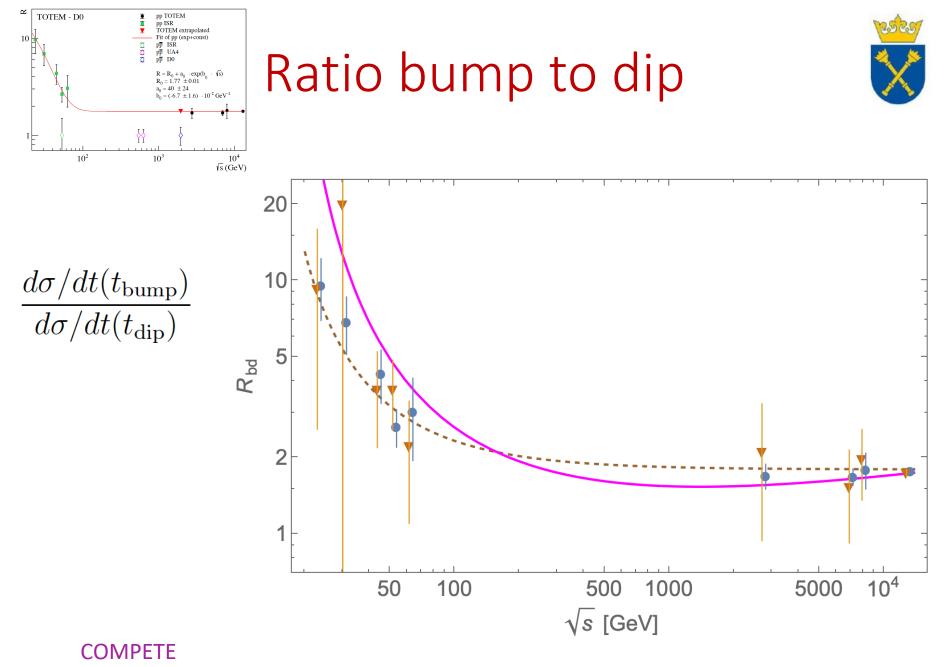
$$\operatorname{Re} \tilde{T}_{\rm el}(s, \tau_{\rm dip}) = s \frac{\pi}{2} \frac{dR^2(y)}{dy} \frac{d}{d\tau} \Phi[\tau_{\rm dip}]$$

$$\frac{d}{d\tau} \Phi[\tau_{\rm bump}] = 0 \to \operatorname{Im} \tilde{T}_{\rm el}(s, \tau_{\rm dip}) = sR^2(y)\Phi[\tau_{\rm bump}]$$

$$\operatorname{Re} \tilde{T}_{\rm el}(s, \tau_{\rm dip}) = s \frac{\pi}{2} \frac{dR^2(y)}{dy} \Phi[\tau_{\rm bump}]$$

$$\frac{d\sigma/dt(t_{\rm bump})}{d\sigma/dt(t_{\rm dip})} = c_0 \frac{1 + \rho^2(y)}{\rho^2(y)}$$

$$c_0 = \frac{\Phi^2[\tau_{\rm bump}]}{(\tau_{\rm dip} \frac{d}{d\tau} \Phi[\tau_{\rm dip}])}$$



A. Donnachie (Manchester U.), P.V. Landshoff (CERN) Phys.Lett.B 296 (1992) 227-232

Total elastic cross section

Assuming GS holds everywhere

$$\sigma_{\rm el}(s) = \frac{1}{4\pi R^2(y)} \left[R^4(y) \int d\tau \Phi^2[\tau] + \left(\frac{\pi}{2} \frac{dR^2(y)}{dy}\right)^2 \int d\tau \left(\frac{d}{d\tau} \left(\tau \Phi[\tau]\right)\right)^2 \right]$$
$$= \frac{R^2(y)}{4\pi} \left(1 + c_1 \rho^2(y)\right) \times \int d\tau \Phi^2[\tau] \qquad c_1 = \frac{\int d\tau \left(\frac{d}{d\tau} \left(\tau \Phi[\tau]\right)\right)^2}{\int d\tau \Phi^2[\tau]}$$

- ISR: rho is very small, does not influence energy behavior
- LHC: rho is larger but almost constant, does not change energy behavior either

Total elastic cross section

Assuming exponential diffractive peak (no dips and bumps)

$$\frac{\sigma_{\rm el}(s)}{\sigma_{\rm tot}(s)} \sim \frac{\sigma_{\rm tot}(s)}{B(s)} \left(1 + \rho^2(s)\right)$$

Works within a few %. However, if $\sigma_{tot}(s) \neq B(s)$ GS is violated. Asymptotically (M.M. Block, Phys. Rept. (2006))

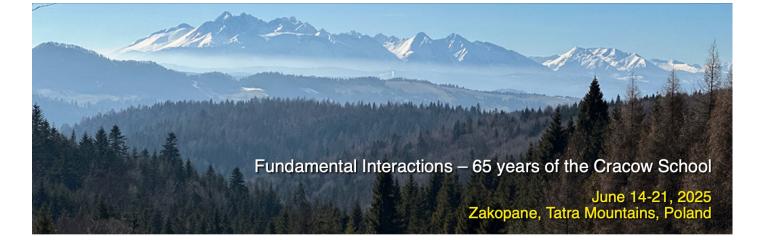
 $\sigma_{\rm tot}(s)/B(s) \to {\rm const.}$

Summary

- Bump to dip position ratio is constant from ISR to LHC
- Universal scaling variable $\tau \sim \sigma_{tot}(s) |t| = R^2(y) |t|$
- Crossing and GS and expansion

$$R^2\left(y - i\frac{\pi}{2}\right) \simeq R^2(y) - i\frac{\pi}{2}\frac{dR^2(y)}{dy}$$

- Parameter free prediction for rho parameter
- Dip and bump structure understood in terms of sig_tot and its derivative
- Main properties of total and differential cross-sections <u>at all energies</u> in the dip – bump region explained from a simple and intuitive picture based on GS
- But still approximate, total elastic x-section is not reproduced GSV at small t



65. Jubilee Cracow School of Theoretical Physics

Fundamental Interactions - 65 years of the Cracow School

June 14-21, 2025 Zakopane, Tatra Mountains, Poland

Important dates:

4 April 2025 - registration opens
11 May 2025 - registration closes
14 June 2025 - Saturday, arrival in the evening
15 - 20 June 2025 - lectures and seminars
21 June 2025 - Saturday, departure in the morning

Topics include:

- Latest results from the LHC and RHIC
 Future high energy machines: EIC, FCC and others
 Artificial intelligence
 Perturbative and nonperturbative chromodynamics (QCD)
- Phase diagram of QCD: from neutron stars to heavy ion collisions
- Particle spectroscopy including exotica
- Weak interactions and precision physics
- Beyond Standard Model

The School is organized by:

- Institute of Theoretical Physics, Jagiellonian University, Kraków
- M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków

Menu

home

home 2025
indico web page
general information
venue
speakers
agenda
registration
registered participants
poster&photos

