A Unified Framework for Gluon GTMDs in the Small-x Regime

Yoshikazu Hagiwara in collaboration with Sanjin Benić (University of Zagreb)

ACHT, May 07 2025, Budapest

Contents

- Introduction to PDFs and Color Glass Condensate
- Two parameterizations of twist 2 gluon GTMDs
- TMD and GPD limit
- Conclusions

Glass Condensate 2 aluon GTMDs

Understanding the proton(hadrons)

 Protons contribute to nearly 90% of the visible mass in the universe, making up the bulk of the mass of atoms.

 \rightarrow proton mass

- The proton is a composite particle, made up of quarks and gluons. \rightarrow proton spin, mechanical properties of proton
- No color-charged objects have been observed in isolation

→ color confinement mechanism

Nature volume 615, pages 813–816 (2023)

Parton distribution functions **Factorization theorem**

parts

Non perturbative part is universal and called Parton distribution functions

$$\frac{f_{(0)\,j/h}(\xi)}{2\pi} = \int \frac{\mathrm{d}w^{-}}{2\pi} \, e^{-i\xi P^{+}w^{-}} \left\langle P \left| \overline{\psi}_{j}^{(0)}(0,\,w^{-},\,\mathbf{0}_{\mathrm{T}})W(w^{-},\,0) \frac{\gamma^{+}}{2} \psi_{j}^{(0)}(0) \right| P \right\rangle_{\mathrm{c}}$$
$$W(w^{-},\,0) = P \left\{ e^{-ig_{0}\int_{0}^{w^{-}}\mathrm{d}y^{-}A_{(0)\alpha}^{+}(0,\,y^{-},\,\mathbf{0}_{\mathrm{T}})t_{\alpha}} \right\}$$

QCD factorization theorem separate non perturbative and perturbative

J. Collins 2011

$${}^{\mu\nu} = \sum_{j} \int_{x-1}^{1+1} \frac{d\xi}{\xi} \operatorname{Tr} \frac{C_{j}^{\mu\nu}(q,\xi P;\alpha_{s},\mu)}{\xi} \rho_{j}(\xi;\mu) \frac{f_{j}(\xi;\mu)}{f_{j}(\xi;\mu)} + \text{p.s.c.}$$

Generalization of PDFs More detailed structure of one parton

C. Lorcé, B. Pasquini 2013

Generalized Parton Distribution Functions $\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p', \Lambda' | \overline{\psi}(-\frac{z^{-}}{2}) \Gamma \mathcal{W} \psi(\frac{z^{-}}{2}) | p, \Lambda \rangle$ $p' - p = \Delta_T \quad \stackrel{\text{\tiny F.L.}}{\longrightarrow} \quad b_T : \text{Impact parameter}$ Transverse Momentum Dependent PDFs $\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{T}}{(2\pi)^{3}} e^{ixP^{+}z^{-} - i\vec{k_{T}}\cdot\vec{z}_{T}} \left\langle P, \Lambda' | \overline{\psi}(-\frac{z}{2})\Gamma \mathcal{W}\psi(\frac{z}{2}) | P, \Lambda \right\rangle \Big|_{z^{+}=0}$

 k_T : Transverse momentum

Kornelija's talk Nikola's talk

Eduardo's talk

GTMDs and other PDFs on distribution functions Rela Gene $\langle p', \Lambda' | \overline{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p, \Lambda \rangle \Big|_{z^+ = 0}$ dz $\left|\frac{1}{2}\right|$ $(2\pi)^{3}$

Polarization dependences

Quark PolarizationUn-Polarized (U)Longitudinally Polarized (L)Transversely Polarized (T)U $f_1 = \bigcirc$ $h_1^{\perp} = \bigcirc - \bigcirc$ Boer-MuldersU $f_1 = \bigcirc$ $h_1^{\perp} = \bigcirc - \bigcirc$ Boer-MuldersU $f_1 = \bigcirc$ $h_1^{\perp} = \bigcirc - \bigcirc$ Boer-MuldersU $f_1 = \bigcirc$ $g_{1L} = \bigcirc - \bigcirc + - \bigcirc +$ HelicityU $f_1 = \bigcirc - \bigcirc + - \bigcirc +$ Boer-Mulders $h_1 = \bigcirc - \bigcirc + - \bigcirc +$ Worm-gear-LU $f_1 = \bigcirc - \bigcirc + - \bigcirc + - \bigcirc + +$ Helicity $h_1 = \bigcirc - \bigcirc + - \bigcirc + + +$ Worm-gear-LU $f_1 = \bigcirc - \bigcirc + - \bigcirc + + + + - \bigcirc + + + + + + + +$	Leading Twist TMDs → Nucleon Spin				
Un-Polarized (U)Longitudinally Polarized (L)Transversely Polarized (T)U $f_1 = \bigcirc$ $h_1^{\perp} = \bigcirc - \bigcirc$ 		Quark Polarization			
$\begin{array}{c c} U & f_{1} = \bullet \\ L & g_{1L} = \bullet \\ \hline H_{1}^{\perp} = \bullet \\ \hline H_{1L}^{\perp} = \bullet \\ \hline H_{1L}^{$		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)	
$\begin{array}{c c} \mathbf{L} & g_{1L} = \underbrace{\bullet}_{Helicity} & h_{1L}^{\perp} = \underbrace{\bullet}_{Worm-gear-L} & h_{1L}^{\perp} = \underbrace{\bullet}_{Worm-gear-L}$	C tion	$f_1 = \bullet$		$h_1^{\perp} = \bigoplus_{\text{Boer-Mulders}}^{\perp} - \bigoplus_{\text{Boer-Mulders}}^{\perp}$	
T $f_{1T}^{\perp} = \underbrace{\bullet}_{1T} - \underbrace{\bullet}_{1T} = \underbrace{\bullet}_{1T} - \underbrace{\bullet}_{1T} + \underbrace{\bullet}_{1T} - \underbrace{\bullet}_{1T} + \underbrace{\bullet}_{1T} - \underbrace{\bullet}_{1T} + \underbrace{\bullet}_{1T} +$	Polarizat		$g_{1L} = \bigoplus + - \bigoplus +$ Helicity	$h_{1L}^{\perp} = \checkmark \rightarrow - \checkmark$ Worm-gear-L	
Sivers Vorm-gear-T $h_{1T}^{\perp} = $ —	Nucleon	$f_{1T}^{\perp} = \bullet - \bullet$	$g_{1T}^{\perp} = \left(\begin{array}{c} \uparrow \\ \bullet \end{array} \right) - \left(\begin{array}{c} \uparrow \\ \bullet \end{array} \right)$	$h_1 = \underbrace{\uparrow}_{\text{Transversity}} + \underbrace{\uparrow}_{\text{Transversity}}$	
		Sivers ↓	Worm-gear-T	$h_{1T}^{\perp} = 2$	

white paper

C. Lorcé, B. Pasquini 2013

Color Glass Condensate(gluon saturation) Gluon dominance

Color Glass Condensate Meanings

- Color: since the gluons carry the SU(3) 'color' charge of QCD
- Glass: since the associated color fields evolve very slowly relative to natural time scales, and are disordered
- Condensate: since the occupation numbers at saturation are of order $1/\alpha$, which is the largest value permitted by the gluon repulsive interactions. So, the saturated state is in fact a Bose condensate

E. lancu 2005

Color Glass Condensate Classical sources and fields

Color Glass Condensate separate soft and hard scale

fields ———

 Λ_{0}

 $\Lambda_{I}^{-} \Lambda_{0}^{-}$ $\delta T_{\rm NLO} = T_{\rm LO}$ mode charge

 $D_{\mu} \mathcal{F}^{\mu\nu} = J^{\nu}$

 $J^{\mu}_{a} = \delta^{\mu+}\delta(x^{-})\rho_{a}(x^{-},x_{\perp})$

F.Gelis, E.Iancu, J.Jalilian-Marian and R.Venugopalan 2010

Lorenz gauge $\partial^{\mu} \mathcal{A}^{\mu} = 0$

$$\mathcal{A}^{a\mu} = \delta^{\mu+} \alpha_a(x^-, \boldsymbol{x})$$
$$-\nabla_{\perp}^2 \alpha_a(\vec{x}) = \rho^a(x)$$

Color Glass Condensate

Consider the physical expectation values as averaging the charge distributions(hard) inside hadrons with gluon field(soft)

$$\langle \mathcal{O} \rangle_{\Lambda^+} \equiv \int \left[D\rho \right] W_{\Lambda^+}$$

Quantum renormalization evolution of the charge distribution

B-JIMWLK equation

$$\begin{aligned} \frac{\partial W_Y[\rho]}{\partial Y} &= H W_Y[\rho] \\ H &= \frac{1}{2} \int_{x_\perp y_\perp} \frac{\delta}{\delta \rho^a(x_\perp)} \,\chi^{ab}(x_\perp, y_\perp)[\rho] \,\frac{\delta}{\delta \rho^b(y_\perp)} \\ \chi^{ab}(\boldsymbol{x}, \boldsymbol{y}) &= \frac{1}{\pi} \int \frac{d^2 \boldsymbol{z}}{(2\pi)^2} \,\mathcal{K}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \,\left(1 + \tilde{V}_{\boldsymbol{x}}^{\dagger} \tilde{V}_{\boldsymbol{y}} - \tilde{V}_{\boldsymbol{x}}^{\dagger} \tilde{V}_{\boldsymbol{z}} - \tilde{V}_{\boldsymbol{z}}^{\dagger} \tilde{V}_{\boldsymbol{y}}\right)^{ab} \\ \mathcal{K}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &\equiv \frac{(x^i - z^i)(y^i - z^i)}{(x - z)^2 (z - y)^2} \quad \tilde{V}^{\dagger}(\boldsymbol{x}) = \operatorname{Pexp}\left(ig \int dx^- \alpha^a(x^-, \boldsymbol{x}) T^a\right) \end{aligned}$$

F.Gelis, E.Iancu, J.Jalilian-Marian and R.Venugopalan 2010

- $\int [D\rho] W_{\Lambda_0^-}[\rho] (\boldsymbol{T}_{\text{LO}} + \delta \boldsymbol{T}_{\text{NLO}}) = \int [D\rho] W_{\Lambda_1^-}[\rho] \boldsymbol{T}_{\text{LO}}$ $-\left[
 ho\right]\mathcal{O}\left[
 ho
 ight]$ $W_{\Lambda_1^-} \equiv (1 + \ln(\Lambda_0^-/\Lambda_1^-) \mathcal{H}) W_{\Lambda_0^-}$

Initial distribution: McLerran Venugopalan model (Gaussian due to CLT)

$$W_{MV}[\rho] = \mathcal{C} \exp\left[-\int dx^- d^2 x_\perp \frac{\rho^a(x^-, x_\perp)\rho^a(x^-, x_\perp)}{2\mu^2(x^-)}\right]$$

$$m{p}_{\perp} + rac{m{r}_{\perp}}{2}, m{b}_{\perp} - rac{m{r}_{\perp}}{2} \Big) = rac{1}{N_c} \left\langle \operatorname{tr} \left[U_{b_{\perp} + r_{\perp}/2} U_{b_{\perp} - r_{\perp}/2}^{\dagger}
ight]
ight
angle
onumber \ U_{x_{\perp}} = \mathcal{P} \exp \left[ig \int dz^+ \mathcal{A}^-(x_{\perp}, z^+) dz^+ \mathcal{A}^-(x_{\perp}, z^+)
ight
angle$$

Twist 2 gluon GTMDs Leading twist operators

$$W_{\Lambda'\Lambda}^{ij} = \frac{2}{xP^+} \int \frac{\mathrm{d}z^- \mathrm{d}^2 \boldsymbol{z}_\perp}{(2\pi)^3} \mathrm{e}^{\mathrm{i}xP^+ \boldsymbol{z}^- - \boldsymbol{z}_\perp}$$

Twist 2 operators $U = \delta^{ij} W^{ij} ,$ $L = -\mathrm{i}\epsilon^{ij}W^{ij} \,,$ $T_R = -W^{RR} \,,$ $T_L = -W^{LL}.$ $a_{R,L} = a^1 \pm ia^2$

H

C. Lorcé, B. Pasquini 2013

$-\mathrm{i} \mathbf{k}_{\perp} \cdot \mathbf{z}_{\perp} \langle p' \Lambda' | \mathrm{tr} \left(F^{+i} (-z/2) \mathcal{W} F^{+j} (z/2) \mathcal{W}' \right) | p \Lambda \rangle$

Connections to helicity amplitudes $H_{\Lambda'\lambda',\Lambda\lambda}(P,k,\Delta,N;\eta_i) = \langle p',\Lambda' | \mathcal{O}_{\lambda'\lambda}(k,N;\eta_i) | p,\Lambda \rangle$

$$T_{\Lambda'\lambda',\Lambda\lambda} = \begin{pmatrix} \frac{1}{2}(U+L)_{\Lambda'\Lambda} & \frac{1}{2}T_{R,\Lambda'\Lambda} \\ \frac{1}{2}T_{L,\Lambda'\Lambda} & \frac{1}{2}(U-L)_{\Lambda'\Lambda} \end{pmatrix}_{\lambda'\lambda}$$

Helicity decomposed amplitude and GTMDs A parametrization of twist 2 gluon GTMDs C. Lorcé, B. Pasquini 2013

Parametrization through S, P, D, F states

Helicity non-flip

Spin
non-flip
$$\begin{aligned} H_{+\frac{1}{2}+1,+\frac{1}{2}+1} &= \frac{1}{2} \left[(S_{1,1a}^{0,+} + S_{1,1a}^{0,-}) + i \frac{\boldsymbol{k}_{\perp} \times \boldsymbol{\Delta}_{\perp}}{M^2} (S_{1,1b}^{0,+} + S_{1,1a}^{0,+}) \right] \\ H_{-\frac{1}{2}+1,-\frac{1}{2}+1} &= \frac{1}{2} \left[(S_{1,1a}^{0,+} - S_{1,1a}^{0,-}) - i \frac{\boldsymbol{k}_{\perp} \times \boldsymbol{\Delta}_{\perp}}{M^2} (S_{1,1b}^{0,+} - S_{1,1a}^{0,+}) \right] \\ \\ Spin \\ \text{flip} \end{aligned}$$
$$\begin{aligned} H_{+\frac{1}{2}+1,-\frac{1}{2}+1} &= \frac{1}{2} \left[-\frac{k_L}{M} (P_{1,1a}^{0,+} - P_{1,1a}^{0,-}) - \frac{\boldsymbol{\Delta}_L}{M} (P_{1,1b}^{0,+} - P_{1,1a}^{0,-}) \right] \\ H_{-\frac{1}{2}+1,\frac{1}{2}+1} &= \frac{1}{2} \left[\frac{k_R}{M} (P_{1,1a}^{0,+} + P_{1,1a}^{0,-}) + \frac{\boldsymbol{\Delta}_R}{M} (P_{1,1b}^{0,+} + P_{1,1b}^{0,-}) \right] \end{aligned}$$

tates

 $\begin{array}{ll} \begin{array}{l} \text{Helicity flip} \\ \begin{array}{l} S_{1,1b}^{0,-} \end{array} \end{bmatrix}, & H_{+\frac{1}{2}+1,+\frac{1}{2}-1} = -\frac{1}{2} \left[\frac{k_R^2}{M^2} (D_{1,1a}^{2,+} + D_{1,1a}') + \frac{\Delta_R^2}{M^2} (D_{1,1b}^{2,+} + D_{1,1b}') \right], \\ S_{1,1b}^{0,-} \end{array} \right], & H_{-\frac{1}{2}+1,-\frac{1}{2}-1} = -\frac{1}{2} \left[\frac{k_R^2}{M^2} (D_{1,1a}^{2,+} - D_{1,1a}') + \frac{\Delta_R^2}{M^2} (D_{1,1b}^{2,+} - D_{1,1b}') \right], \\ S_{1,b}^{0,-} \end{array} \right], & H_{+\frac{1}{2}+1,-\frac{1}{2}-1} = -\frac{1}{2} \left[\frac{k_R}{M} P_{1,1a}^{2,+} + \frac{\Delta_R}{M} P_{1,1b}^{2,+} \right], \\ H_{-\frac{1}{2}+1,+\frac{1}{2}-1} = -\frac{1}{2} \left[\frac{k_R^3}{M^3} F_{1,1a}^{2,+} + \frac{\Delta_R^3}{M^3} F_{1,1b}^{2,+} \right]. \end{array}$

Parametrization of GTMDs at small x **Dipole amplitude representations**

Small x limit of dipole gluon GTMD

$$W_{\Lambda'\Lambda}^{ij} \to \frac{2N_c}{x\alpha_S} \left(k_{\perp}^i + \frac{1}{2}\Delta_{\perp}^i \right) \left(k_{\perp}^j - \frac{1}{2}\Delta_{\perp}^j \right) \mathcal{N}_{\Lambda'\Lambda}$$
$$= \int \frac{\mathrm{d}^2 \boldsymbol{x}_{\perp}}{(2\pi)^2} \int \frac{\mathrm{d}^2 \boldsymbol{y}_{\perp}}{(2\pi)^2} \mathrm{e}^{-\mathrm{i}\boldsymbol{k}_{\perp} \cdot (\boldsymbol{x}_{\perp} - \boldsymbol{y}_{\perp}) + \mathrm{i}\boldsymbol{\Delta}_{\perp} \cdot \frac{\boldsymbol{x}_{\perp} + \boldsymbol{y}_{\perp}}{2}} \frac{1}{N_c} \frac{\langle p'\Lambda' | \mathrm{tr} \left[V(\boldsymbol{x}_{\perp}) V^{\dagger}(\boldsymbol{y}_{\perp}) \right] | p\Lambda \rangle}{\langle P\Lambda | P\Lambda \rangle}$$

Relations to twist 2 operators

$$\begin{split} U_{\Lambda'\Lambda} &= \frac{2N_c}{x\alpha_S} \left(\boldsymbol{k}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N}_{\Lambda'\Lambda} \,, \qquad \mathsf{Pat} \\ L_{\Lambda'\Lambda} &= \frac{2\mathrm{i}N_c}{x\alpha_S} (\boldsymbol{k}_{\perp} \times \boldsymbol{\Delta}_{\perp}) \mathcal{N}_{\Lambda'\Lambda} \,, \qquad \mathcal{N}_{\Lambda'} \\ T_{R,\Lambda'\Lambda} &= -\frac{2N_c}{x\alpha_S} \left(k_R^2 - \frac{\boldsymbol{\Delta}_R^2}{4} \right) \mathcal{N}_{\Lambda'\Lambda} \,. \end{split}$$

Y. Hatta. B. W. Xiao and F. Yuan. 2016. D. Boer, T. Van Daal, P. J. Mulders, and E. Petreska, 2018

arametrization of dipole amplitude $\mathbf{\Lambda}_{\Lambda'\Lambda} = \delta_{\Lambda\Lambda'}\mathcal{N} + \delta_{\Lambda,-\Lambda'}\frac{1}{M}(\Lambda k_{\perp}^1 + \mathrm{i}k_{\perp}^2)\mathcal{N}_{1T}^{\perp} + \delta_{\Lambda,-\Lambda'}\frac{1}{M}(\Lambda\Delta_{\perp}^1 + \mathrm{i}\Delta_{\perp}^2)\mathcal{N}_T$

Matching of two parameterizations Helicity non-flip part

We confirm the known results for unpolarized TMD and k_1 -moment of spin orbit correlation S.Bhattacharya, R.Boussarie and Y.Hatta, 2024

Spin non-flip $xS_{1,1a}^{0,+} = \frac{2N_c}{\alpha_S} \left(\boldsymbol{k}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N},$ $xS_{1,1a}^{0-} = 0$, $xS_{1,1b}^{0+} = 0$, $xS_{1,1b}^{0,-} = \frac{2N_c}{\alpha_S} M^2 \mathcal{N}.$

Spin flip

$$\begin{aligned} xP_{1,1a}^{0,+} &= \frac{2N_c}{\alpha_S} \left(\boldsymbol{k}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N}_{1T}^{\perp}, \\ xP_{1,1a}^{0,-} &= -\frac{2N_c}{\alpha_S} \left[(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \mathcal{N}_{1T}^{\perp} + \boldsymbol{\Delta}_{\perp}^2 \mathcal{N}_T \right], \\ xP_{1,1b}^{0,+} &= \frac{2N_c}{\alpha_S} \left(\boldsymbol{k}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N}_T, \\ xP_{1,1b}^{0,-} &= \frac{2N_c}{\alpha_S} \left[\boldsymbol{k}_{\perp}^2 \mathcal{N}_{1T}^{\perp} + (\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \mathcal{N}_T \right]. \end{aligned}$$

Matching of two parameterizations **Gluon helicity flip part**

the PT symmetry of the Wilson lines \rightarrow some zero components

$$\frac{N_c}{4S} \left[\left(\boldsymbol{k}_{\perp}^2 + \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N}_{1T}^{\perp} + 2(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \mathcal{N}_T \right] \\
\frac{N_c}{S} \left[\frac{1}{2} (\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \mathcal{N}_{1T}^{\perp} + \left(\boldsymbol{k}_{\perp}^2 + \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right) \mathcal{N}_T \right] \\
\frac{N_c}{S} \mathcal{M}^2 \left[\frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^4}{4}}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{2(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{2(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}) \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2}}{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2} \frac{4(\boldsymbol{k}_{\perp} \cdot \boldsymbol{\Delta}_{\perp})^2 - \boldsymbol{k}_{\perp}^2 \boldsymbol{\Delta}_{\perp}^2} \mathcal{N}_{1T}^{\perp} + \frac{1}{2}$$

TMD limit **Consistency check**

Relations between GTMDs and TMDs

 $xf_1 = x \operatorname{Re}(S_{1,1a}^{0,+}) \rightarrow \frac{2N_c}{\alpha_c} k_{\perp}^2 \mathcal{P},$ $xg_{1L} = x \operatorname{Re}(S_{1,1a}^{0,-}) \to 0$, $xh_1 = x \operatorname{Im}(P_{1,1a}^{2,+}) \to \frac{2N_c}{\alpha\varsigma} \mathbf{k}_{\perp}^2 \mathcal{O}_{1T}^{\perp},$ $xh_{1L}^{\perp} = 2x \operatorname{Im}(D_{1,1a}^{\prime 2,+}) \to 0,$ $xf_{1T}^{\perp} = -x\operatorname{Im}(P_{1,1a}^{0,+}) \to \frac{2N_c}{\alpha}k_{\perp}^2\mathcal{O}_{1T}^{\perp},$ $xg_{1T} = x \operatorname{Re}(P_{1,1a}^{0,-}) \to 0$, $xh_1^{\perp} = 2x \operatorname{Re}(D_{1,1a}^{2,+}) = -\frac{4N_c}{\alpha_s} M^2 \mathcal{P},$ $xh_{1T}^{\perp} = 2x \operatorname{Im}(F_{1,1a}^{2,+}) = -\frac{4N_c}{\alpha_S} M^2 \mathcal{O}_{1T}^{\perp}.$

Parametrization of dipole amplitudes

$$\mathcal{N} = \mathcal{P} + i \frac{(\mathbf{k}_{\perp} \cdot \mathbf{\Delta}_{\perp})}{M^2} \mathcal{O},$$

$$\mathcal{N}_{1T}^{\perp} = \frac{(\mathbf{k}_{\perp} \cdot \mathbf{\Delta}_{\perp})}{M^2} \mathcal{P}_{1T}^{\perp} + i \mathcal{O}_{1T}^{\perp}$$

$$\mathcal{N}_T = \mathcal{P}_T + i \frac{(\mathbf{k}_{\perp} \cdot \mathbf{\Delta}_{\perp})}{M^2} \mathcal{O}_T.$$

Obtained known relations $f_1 = -rac{k_\perp^2}{2M^2} h_1^\perp \,, \qquad f_{1T}^\perp = h_1 = -rac{k_\perp^2}{2M^2} h_{1T}^\perp \,,$

D. Boer, T. Van Daal, P. J. Mulders, and E. Petreska. 2018

TMD limit **Consistency check**

Relations between GTMDs and TMDs

 $xf_1 = x \operatorname{Re}(S_{1,1a}^{0,+}) \rightarrow \frac{2N_c}{\alpha_S} k_\perp^2 \mathcal{P},$ $xg_{1L} = x \operatorname{Re}(S_{1,1a}^{0,-}) \to 0$, $xh_1 = x \operatorname{Im}(P_{1,1a}^{2,+}) \to \frac{2N_c}{\alpha_S} \mathbf{k}_{\perp}^2 \mathcal{O}_{1T}^{\perp},$ $xh_{1L}^{\perp} = 2x \operatorname{Im}(D_{1,1a}^{\prime 2,+}) \to 0,$ $xf_{1T}^{\perp} = -x \operatorname{Im}(P_{1,1a}^{0,+}) \to \frac{2N_c}{\alpha_c} k_{\perp}^2 \mathcal{O}_{1T}^{\perp},$ $xg_{1T} = x \operatorname{Re}(P_{1,1a}^{0,-}) \to 0$, $xh_1^{\perp} = 2x \operatorname{Re}(D_{1,1a}^{2,+}) = -\frac{4N_c}{\alpha_S} M^2 \mathcal{P},$ $xh_{1T}^{\perp} = 2x \operatorname{Im}(F_{1,1a}^{2,+}) = -\frac{4N_c}{\alpha_S} M^2 \mathcal{O}_{1T}^{\perp}.$

Leading Twist TMDs

→ Nucleon Spin

Gluon helicity

↔

Obtained known relations

$$f_1 = -rac{m{k}_\perp^2}{2M^2} h_1^\perp, \qquad f_{1T}^\perp = h_1 = -rac{m{k}_\perp^2}{2M^2} h_{1T}^\perp,$$

D. Boer, T. Van Daal, P. J. Mulders, and E. Petreska. 2018

GPD limit

Azimuthal expansion

 $\mathcal{P}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) = \mathcal{P}_0(k_{\perp}, \boldsymbol{\Delta}_{\perp}) + 2\cos(2\phi_{k\Delta})\mathcal{P}_{\epsilon}(k_{\perp}, \boldsymbol{\Delta}_{\perp}) + \dots,$ $\mathcal{P}_{1T}^{\perp}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) = \mathcal{P}_{1T,0}^{\perp}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) + 2\cos(2\phi_{k\Delta})\mathcal{P}_{1T,\epsilon}^{\perp}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) + \dots,$ $\mathcal{P}_T(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) = \mathcal{P}_{T,0}(k_{\perp}, \boldsymbol{\Delta}_{\perp}) + 2\cos(2\phi_{k\Delta})\mathcal{P}_{T,\epsilon}(k_{\perp}, \boldsymbol{\Delta}_{\perp}) + \dots,$

Relation to GPDs

$$\begin{split} H &= \frac{1}{\sqrt{1 - \xi^2}} [\mathcal{S}_{1,1}^{0,+} + 2\xi^2 \mathcal{P}_{1,1}^{0,+}] \to \mathcal{S}_{1,1}^{0,+}, \\ E &= 2\sqrt{1 - \xi^2} \mathcal{P}_{1,1}^{0,+} \to 2\mathcal{P}_{1,1}^{0,+}, \\ \tilde{H} &= \frac{1}{\sqrt{1 - \xi^2}} [\mathcal{S}_{1,1}^{0,-} + 2\xi \mathcal{P}_{1,1}^{0,-}] \to \mathcal{S}_{1,1}^{0,-}, \\ \xi \tilde{E} &= 2\sqrt{1 - \xi^2} \mathcal{P}_{1,1}^{0,-} \to 2\mathcal{P}_{1,1}^{0,-}, \\ H_T &= -\frac{1}{\sqrt{1 - \xi^2}} \left[\mathcal{P}_{1,1}^{2,+} - 4\xi \mathcal{D}_{1,1}'^{2,+} + \frac{\Delta_{\perp}^2}{M^2} \mathcal{F}_{1,1}^{2,+} \right] \to -\mathcal{P}_{1,1}^{2,+} - \frac{\Delta_{\perp}^2}{M^2} \mathcal{F}_{1,1}^{2,+}, \\ E_T &= -\frac{4}{\sqrt{1 - \xi^2}} \left[\mathcal{D}_{1,1}^{2,+} + \xi \mathcal{D}_{1,1}'^{2,+} + 2\mathcal{F}_{1,1}^{2,+} \right] \to -4 \left[\mathcal{D}_{1,1}^{2,+} + 2\mathcal{F}_{1,1}^{2,+} \right], \\ \tilde{H}_T &= 4\sqrt{1 - \xi^2} \mathcal{F}_{1,1}^{2,+} \to 4\mathcal{F}_{1,1}^{2,+}, \\ \tilde{E}_T &= -\frac{4}{\sqrt{1 - \xi^2}} \left[\xi \mathcal{D}_{1,1}^{2,+} + \mathcal{D}_{1,1}'^{2,+} + 2\xi \mathcal{F}_{1,1}^{2,+} \right] \to -4\mathcal{D}_{1,1}'^{2,+}, \end{split}$$

Y.Hatta, B.W.Xiao and F.Yuan, 2017 For xH and xEt

Obtained relations $xH = \frac{2N_c}{\alpha_S} \int \mathrm{d}^2 \boldsymbol{k}_\perp \boldsymbol{k}_\perp^2 \boldsymbol{\mathcal{P}}_0,$ $xE = \frac{8N_c}{\alpha_S} \int \mathrm{d}^2 \mathbf{k}_\perp \mathbf{k}_\perp^2 \left[\frac{\mathbf{k}_\perp^2}{M^2} \mathcal{P}_{1T,0}^\perp + 2\mathcal{P}_{T,0} \right] \,,$ xH=0, $\xi \tilde{E} = 0 \,,$ $xH_T = -\frac{4N_c}{\alpha_S} \int \mathrm{d}^2 \boldsymbol{k}_\perp \boldsymbol{k}_\perp^2 \left[\frac{\boldsymbol{k}_\perp^2}{M^2} \mathcal{P}_{1T,0}^\perp + 4\mathcal{P}_{T,0} - \frac{\boldsymbol{k}_\perp^2}{4M^2} \mathcal{P}_{1T,\epsilon}^\perp \right]$ $xE_T = \frac{8N_c}{\alpha_S} \frac{M^2}{\Lambda_\perp^2} \int d^2 \boldsymbol{k}_\perp \boldsymbol{k}_\perp^2 \left[\mathcal{P}_\epsilon + \frac{\boldsymbol{k}_\perp^2}{M^2} \mathcal{P}_{1T,\epsilon}^\perp \right] ,$ $x\tilde{H}_T = -\frac{4N_c}{\alpha_S} \frac{1}{\boldsymbol{\Delta}_{\perp}^2} \int \mathrm{d}^2 \boldsymbol{k}_{\perp} \boldsymbol{k}_{\perp}^4 \mathcal{P}_{1T,\epsilon}^{\perp} \,,$ $x\tilde{E}_T = 0$.

Conclusions

- component is universal and encoded in the PDFs
- expectation values of Wilson lines

 The factorization theorem enables the separation of cross sections into perturbative and non-perturbative parts. The non-perturbative

Within the CGC formalism, these PDFs can be expressed in terms of

 By parameterizing PDFs through twist expansion and using the CGC framework, we establish connections among GTMDs. This provides a unified description of PDFs directly via the dipole scattering amplitude

Thank you!