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How to gain insight into the structure of hadrons

Hadrons such as the proton are a mess of many interacting
quarks/gluons!

Nevertheless, protons have well-defined physical properties such as
mass, spin etc.
⇒ How can we explain these in terms of the properties of the
constituent partons?
Experimentally: Perform high-energy scattering experiments that
can resolve the inner hadron structure (e.g. scatter electrons off a
proton)
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Scattering experiments: Deeply-inelastic scattering

Assumptions:
Photon highly virtual, Q2 ≡ −q2 � p2

s � m2
p
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Scattering experiments: Deeply-virtual Compton scattering

* Virtuality: Q2 = −q2

* Bjorken-x: xB = Q2

2p·q

* Momentum transfer on hadronic target: t = (p − p′)2 ≡ δ2

* Skewedness: ξ = (p−p′)+

(p+p′)+ [lightcone coordinates: p± = 1√
2 (p

0 ± p3)]
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Description of scattering experiments

Hard scale ⇒ Factorization between short-range and long-range
physics

σ̂(pA, pB) =
∑
a,b

∫ 1

0
dxa fa/A(xa, µ

2
F )

∫ 1

0
dxb fb/B(xb , µ

2
F )σab(pa, pb ;µ

2
F )

Short-range physics characterized by the perturbative partonic cross
section σab

Long-range physics described by non-perturbative parton distributions
like PDFs and GPDs
Through application of the OPE, these distributions are related to
hadronic matrix elements of composite QCD operators
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Leading-twist operators

The OPE is dominated by leading-twist operators, where
twist = dimension - spin. We can distinguish 2 sets of leading-twist
operators based on their representation in the QCD flavour group.

Flavour non-singlet quark operator

O(N)
q NS;µ1...µN

(x) = S
[
ψλαγµ1Dµ2 . . .DµNψ

]
Flavour singlet quark operator + gluon operator

O(N)
g;µ1...µN (x) =

1
2S
[

F a1
µµ1 Da1a2

µ2 ...DaN−2aN−1
µN−1 F aN−1;µ

µN

]
O(N)

q S;µ1...µN
(x) = S

[
ψγµ1Dµ2 . . .DµNψ

]
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PDFs

PDFs are defined in terms of forward matrix elements of the
operators, fi(x) ∼ 〈p+(p)| Oi

µ1...µN |p+(p)〉
Probability to find a parton inside the proton with momentum
xp (0 ≤ x ≤ 1)
Encode the longitudinal momentum/polarization carried by partons
Accessible in inclusive processes (e.g. DIS)
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GPDs
GPDs [Müller et al., 1994],[Radyushkin, 1996],[Ji, 1997] correspond to non-forward
matrix elements of composite operators, 〈p+(p)| Oi

µ1...µN |p+(p′)〉.
They generalize other types of non-perturbative QCD quantities like
PDFs, form factors and distribution amplitudes.
Transverse structure of target from GPDs, can be combined with
longitudinal information ⇒ 3D-description of hadron structure!
If polarization of target changes during scattering: GPDs encode rich
spin structure
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GPDs

Accessible in hard exclusive scattering processes (e.g. DVCS)
→ Very precise measurements to come in (near) future! (EIC
[Boer et al., 2011],[Abdul Khalek et al., 2022]/EicC [Anderle et al., 2021], LHeC
[Abelleira Fernandez et al., 2012], JLab22 upgrade [Accardi et al., 2024], ...)
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Parton distributions and their scale dependence
As the distributions themselves are non-perturbative, we cannot use our
standard perturbative techniques to derive them from first principles
→ Fit from experimental data (see e.g. [Brock et al., 1995]) or use lattice
techniques (see e.g. [Alexandrou et al., 2020], [Ji et al., 2021], [Wang et al., 2021], [Karthik and Sufian, 2021],

[Gao et al., 2023])

However, the energy scale dependence of the distributions can be
calculated perturbatively!

Forward case (DGLAP [Gribov and Lipatov, 1972], [Altarelli and Parisi, 1977], [Dokshitzer, 1977]):
dfi(x , µ2)

d lnµ2 =

∫ 1

x

dy
y Pij(y)fj

(
x
y , µ

2
)

Non-forward case ([Müller et al., 1994],[Radyushkin, 1996],[Ji, 1997]):

dG(x , ξ, t;µ2)

d lnµ2 =

∫ 1

x

dy
y P

(
x
y ,
ξ

y

)
G(y , ξ, t;µ2)
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Scale dependence of parton distributions

Because of the direct relation between the distributions and QCD
operators, the scale dependence of the distributions is determined by the
scale dependence of the operators, characterized by their anomalous
dimension

d[O]

d lnµ2 = γ[O].

These anomalous dimensions can be computed perturbatively in QCD by
renormalizing the (off-shell) partonic matrix elements of the operators.

γ ij
N,N = −

∫ 1

0
dx xNPij(x).

N∑
k=0

γN,kyk

︸ ︷︷ ︸
mixing!

= −
∫ 1

0
dx xN P(x , y).
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Operator mixing: A cocktail of anomalous dimensions

� Without mixing: 1/ε-pole of matrix element ⇒ anomalous dimension
� With mixing: 1/ε-pole gets multiple contributions ⇒ How to
disentangle?

Non-forward kinematics: Mixing with total-derivative operators
In flavour singlet case: Mixing with non-gauge-invariant or ( )
operators

For specific choices of operator bases, both sources of mixing can be
analyzed using conjugation relations
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Conjugations

Suppose we have a function f of some discrete variable N. A conjugation
is then a specific sum over f that, when applied twice, gives back the
original function. For example, if we have some function f (N), then its
binomial transform,

[f (N)]C =
N∑

i=0
(−1)i

(
N
i

)
f (i)

is a conjugation since

⇒
(
[f (N)]C

)C
=

N∑
j=0

(−1)j
(

N
j

) j∑
i=0

(−1)i
(

j
i

)
f (i) = f (N) .

Relations based on such conjugations typically have a significantly reduced
function space!
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Solving conjugation relations

To take full advantage of conjugation relations, one needs to be able
to evaluate them analytically
Use principles of symbolic summation!
Creative telescoping [Zeilberger, 1991]: evaluate the sum of interest by
rewriting it as a recursion relation using Gosper’s algorithm [Gosper, 1978]

The closed-form expression of the sum then corresponds to the linear
combination of the solutions of the recursion that has the same initial
values as the sum.

→ For single sums: Sigma [Schneider, 2004, Schneider, 2007]

→ For multiple sums: EvaluateMultiSums [Schneider, 2013, Schneider, 2014]
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Non-forward anomalous dimensions
To treat the mixing of operators with total-derivative ones in non-forward
kinematics, we select the following basis (focus on flavour-non-singlet case)

OD
k,N−k = (∆ · ∂)k{ψ′(∆ · Γ)(∆ · D)N−kψ} [∆2 = 0]

→ Based on counting derivatives, used e.g. for hadronic studies on the
lattice, see [Gockeler et al., 2005] and [Gracey, 2009]

By also considering operators in which the covariant derivative acts on ψ′,
one can construct recursion relations between the operators which lead to
consistency relations between the anomalous dimensions

∀k :
N∑

j=k

{
(−1)k

(
j
k

)
γqq,NS

N,j − (−1)j
(

N
j

)
γqq,NS

j,k

}
= 0 .

Note that, for k = 0, this reduces to a conjugation as defined above[
γqq,NS

N,0

]C
=

N∑
j=0

γqq,NS
N,j
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Non-forward anomalous dimensions

These relations were used in [Moch and Van Thurenhout, 2021] to determine the
anomalous dimensions in the leading-nf limit to 5-loop accuracy and
in the planar limit to 2 loops
Relations independent of the Dirac structure
→ 4-loop transversity (Γ ∼ [γµ, γν ]) anomalous dimensions in
leading-nf limit [Van Thurenhout, 2022]

Similar relations can be derived for different types of operators; e.g.
in the flavour-singlet sector

∀k > 0 :
N∑

j=k

{
(−1)k

(
j − 1
k − 1

)
γgg

N,j − (−1)j
(

N − 1
j − 1

)
γgg

j,k

}
= 0

→ Derived at 1-loop level in which mixing with aliens can be ignored
→ Hints that it nevertheless stays valid beyond 1-loop accuracy
[needs further investigation!]
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Forward singlet anomalous dimensions

In the flavour-singlet sector, one needs to take into account alien operators

Non-gauge-invariant operators ( )
EOM operators

Recently, G. Falcioni and F. Herzog derived a method to consistently
construct the aliens to any loop-order [Falcioni and Herzog, 2022].

In their approach, the aliens are derived using generalized gauge
symmetry of the QCD Lagrangian.
Each alien operator features a coupling constant which obeys certain
constraint relations, which were solved for fixed N ≤ 20 in
[Falcioni and Herzog, 2022, Falcioni et al., 2024a]

The couplings of the bare alien operators can be interpreted as the
renormalization constants that mix the physical operators into the
aliens
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Forward singlet anomalous dimensions

O(N),II
EOM = gs

(
D · F a + gsψ /∆T aψ

)
f abc

∑
i+j=N−3

κij(∂
iAb)(∂jAc),

O(N),II
c = −gs f abc

∑
i+j=N−3

ηij(∂ca)(∂ iAb)(∂j+1cc)

κij + κji = 0,

ηij = 2κij + η(N)

(
i + j + 1

i

)
,

ηij +
i∑

s=0
(−1)s+j

(
s + j

j

)
η(i−s)(j+s) = 0

NOTE: Bottom relation = conjugation!
Using the techniques employed in [Moch and Van Thurenhout, 2021, Van Thurenhout, 2022],
we were then able to derive the alien couplings to leading order in gs
but for all values of N [Falcioni et al., 2024b]
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Summary & outlook

Hadronic structure is characterized by non-perturbative parton
distributions
The scale dependence of such distributions can be computed
perturbatively as the anomalous dimensions of the operators that
define them
Such perturbative calculations are complicated due to several sources
of operator mixing
Uniform approach: Consistency relations based on conjugations
Several extensions in principle possible but still to be looked at (e.g.
properly taking into account aliens for the non-forward flavour-singlet
anomalous dimensions)
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Classical telescoping and Gosper’s algorithm
The telescoping algorithm is a well-known method for evaluating finite
sums. Suppose we want to evaluate the following sum

N∑
k=a

f (k)

with a,N ∈ N and a ≤ N. Now, if we can find a function g(N) such that

f (k) = ∆g(k) ≡ g(k + 1)− g(k)

then
N∑

k=a
f (k) =

N∑
k=a

g(k + 1)−
N∑

k=a
g(k)

= g(N + 1)− g(a).

Here, ∆ represents the finite difference operator. The telescoping function
g(N) can be found by application of Gosper’s algorithm [Gosper, 1978].
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Classical telescoping and Gosper’s algorithm

Suppose
g(N)

g(N − 1)
is a rational function in N. The algorithm consists of three main steps.
Assume we want to calculate the telescoping function for some sequence
{aN}

aN = ∆b(N).

It is assumed that {aN} is a hypergeometric sequence, that is

aN+1
aN

= q(N)

with q(N) a rational function of N. The steps of Gosper’s algorithm can
then be summarized as follows
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Classical telescoping and Gosper’s algorithm
1 Determine three functions f (x), g(x) and h(x) such that

q(x) = f (x + 1)
f (x)

g(x)
h(x + 1)

and
gcd[g(x), h(x + n)] = 1 (n ∈ N0).

2 Solve the so-called Gosper equation,

f (x) = g(x)y(x + 1)− h(x)y(x),

for the polynomial y(x).
3 If such a polynomial solution does not exist, it means that the sum in

question does not have a hypergeometric closed form. Otherwise, the
telescoping function is determined by

t(x) = h(x)
f (x)y(x) with b(N) = t(N)a(N)

More details can e.g. be found in [Kauers and Paule, 2011]
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Creative telescoping
Classical telescoping works when dealing with sequences that depend on
one variable only. When we want to determine a closed form for a
summation of a sequence depending on two variables, we can use the
creative telescoping algorithm by Zeilberger [Zeilberger, 1991]. The idea is similar
to that of classical telescoping. Suppose we want to evaluate

b∑
k=a

f (N, k) ≡ S(N).

The way to go about this is by attempting to find d functions
c0(N), . . . , cd(N) and a function g(N, k) such that

g(N, k + 1)− g(N, k) = c0(N)f (N, k) + ...+ cd(N)f (N + d , k).
Summing both sides, and applying classical telescoping to the left-hand
side then gives

g(N, b + 1)− g(N, a) = c0(N)
b∑

k=a
f (N, k) + ...+ cd(N)

b∑
k=a

f (N + d , k).
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Creative telescoping
This leads to an inhomogeneous recursion relation for the original sum of
the form

q(N) = c0(N)S(N) + ...+ cd(N)S(N + d).
Typically, one starts this procedure at d = 0, which is equivalent to
classical telescoping. The value of d is then increased stepwise until a
solution is found. The creative telescoping algorithm can be applied when
the sequence under consideration is holonomic. A sequence {aN} is said to
be holonomic if there exist polynomials p0(x), . . . , pr (x) such that the
following recursion relation is obeyed [Kauers and Paule, 2011]

p0(N)aN + p1(N)aN+1 + · · ·+ pr (N)aN+r = 0 (N ∈ N, pr (N) 6= 0).
For example, the harmonic numbers {S1(N)} form a holonomic sequence
as they obey

(N + 1)S1(N)− (2N + 3)S1(N + 1) + (N + 2)S1(N + 2) = 0.
More details on the summation algorithms reviewed here can e.g. be found
in the excellent books [Graham et al., 1989, Petkovŝek et al., 1996].
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4-step algorithm for constructing the non-forward ADM

In practical computations we use a different representation of the
consistency relations

γDN,k =

(
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k,j+k

+
N∑

j=k
(−1)k

(
j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl,j .

X Order-independent consistency check
X Can be used to construct the full ADM from the knowledge of the

forward anomalous dimensions γN,N + boundary condition to ensure
uniqueness of the solution (γDN,0, from Feynman diagrams)
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4-step algorithm for constructing the non-forward ADM

1 Calculate (
N
k

) N−k∑
j=0

(−1)j
(

N − k
j

)
γj+k, j+k

and construct an Ansatz for the off-diagonal piece
2 Calculate

N∑
j=k

(−1)k
(

j
k

) N∑
l=j+1

(−1)l
(

N
l

)
γDl, j

3 Substitute into the consistency relation ⇒ System of equations,
solution not necessarily unique ⇒ Need boundary condition!

4 Determine all-N expression for γDN,0 from Feynman diagrams
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Getting actual predictions for hard exclusive processes

To obtain predictions for physical observables in hard exclusive processes,
like cross-sections and spin/charge asymmetries, one needs to combine the
coefficient functions (state of the art: NNLO for DVCS [Braun et al., 2022]) with a
GPD model. The GPD evolution kernels (operator anomalous dimensions)
are needed to evolve the GPDs from some reference scale to the scale of
interest.
→ Several numeric codes for this purpose exist, e.g.

PARTONS (numeric code for GPD phenomenology) [Berthou et al., 2018]

→ https://partons.cea.fr/partons/doc/html/index.html
Vinnikov code (LO GPD evolution) [Vinnikov, 2006]

GPD evolution for DVCS @ NLO [Freund and McDermott, 2002]

Gepard [Kumericki et al., 2008]

→ https://gepard.phy.hr/index.html
Twist-2 GPD evolution in momentum space [Bertone et al., 2022, Bertone et al., 2024]

→ available through APFEL++ [Bertone et al., 2014, Bertone, 2018] and PARTONS
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