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Introduction
e Non-dissipative transport effects in background magnetic fields,
e originating from the U 4(1) anomaly.
e The most prominent is the Chiral Magnetic Effect’= CME,

e an electric current in the presence of chiral imbalance and a magnetic
field,

e parallel to the magnetic field:

<‘]3>M5,B — <&73¢>u5,B = CCME M5 B3 + (’)(,u‘;’, B3) :

e The coefficient can be obtained as

0 (J3)
Ops

= <J3J8>M5ZO,B = ccMmE 983 .
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Experimental search for CME
e Anomalous origin — detection = detection of topological nature of QCD.
e Topological charge is zero on average — search for local fluctuations in HIC.

e Look for charge separation in angular correlations, big experimental effort.
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¢ No significant signal, but the search continues.

e Was found” in low-dimensional condensed matter experiments, with EM
topology!




Background fields

e Chiral “chemical potential” A} = 5 is treated homogeneous, at most time
dependent.

e Choose z-axis to point in the direction of B.

Homogeneous magetic fields Inhomogeneous magetic fields
e If B3 is homogeneous — Dirac e Perturbatively could treat anything, but
propagator is on the lattice we simplify and choose
—ip(z—y) & B
SB(xay) — (I)(.CU,y) e SB(p)7 BSZ 5 /x .
Schwineer phase cosh” ()
chwinger phase ~ ”

translation invar.

e Similar to a Gaussian (width=¢),
motivated by simulated HIC magnetic

~ field profiles”.
e Sy has a Landau level sum or a |

Schwinger proper time representation. oaf
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Absence of global CME in equilibrium

e Bloch’s theorem
Conserved global currents cannot flow in equilibrium ground state.

Some other approaches:

e Triangle diagram
e Dirac eigenvalues + Lattice (free overlap)
o Weyl-Wigner formalism

e Vacuum polarization in background B + Lattice (full QCD staggered)

End of story, why am | talking about this?




Lattice simulations

e Simulations at finite u5 are possible!

e Quenched and full QCD: Wilson'?
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Absence of global CME in equilibrium

ccMeqB = <J3J§>B =

~C O

Pauli-Villars: I'(mphys) — Z csI'(ms), cs = 1, m123 — 0o, s = 0 is physical.

s=0

ccmegB = —Z cS/d a:/d yTr [v3SB(x, y)vovsSB(Y, )] ,

Using Schwinger proper time representation and some algebra

2 2
m, +p
CCME — —— Cs / dpS dp4 > =

4w3 (m? + pi + p3)?

— P}

The integral for a single PV species is ill-defined!

1 o0 m?—l—pi—

— dp3 dpa

D3 1 1 /
= #
473 ) _ (m?2 + p?l + p% 2 272 A3 ) _

But regularized by the PV sum
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Non-conserved vector current?
lattice Ward identities for Wilson fermions

Local vector current — no lattice WI

Breaking of lattice Wl is a UV effect.

Local version used in hadron spectroscopy, transport effects ...and the 2011
lattice studly.

Does it matter for CME?




Conserved currents & CME

e Quenched QCD (Wilson)
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e Using a non-conserved current “circumvents” Bloch’s theorem, allows
non-vanishing result.

e Crucial to use a conserved vector current




Abscence of global CME in equilibrium QCD

e global CME vanishes in equilibrium, also in QCD

(full QCD staggered)
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Local CME in equilibrium

e Local CME current is not forbidden by Bloch'’s theorem
e Inhomogeneous response to an inhomogeneous B but homogeneous L5

6 (Jsdy) _

conn() = 5B )

e We need the axial-vector—vector—vector 3-point function

AVV
., (+q4qp) =

__ZZC / Tr [v'v5(K + ms)v" (K + ¢ + m)y* (K + ¢ + p + my)]
B ) (K2 = m2)((K + q)? = m)((K + g + p)? — m2)

+ ({v,q} < {p,p}).

(J3(x1)) = M5/ e " 1q Toos (0, —q1,q1)Bs(q1) # 0.
1
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e For our specific magnetic field

profile, B3 =

Local CME in equilibrium

B

cosh? (%)

e the perturbative result

e full QCD lattice simulations'®
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Local CME in equilibrium

B(z) [a.u]
005 () m
n=02 —
0.04 + dJ(x)
s N0 PV
0.03
0.02 +
0.01
0
—0.01 |
—0.02
—4 -2 0 2 4
r

x10~3
_ﬁ\ /&
d r=155Mev
\ //
eB (GeV?)
B 0.1
== 0.2
) . , 0.3
G(:El) = C(Iof (GGV ) 0.4
T
-2 —1 0 1 2

e Perturbative profile is qualitatively correct

e Profile is practically T" independent. Why?

o Use free results to model: HRG (p + X+ + =7).
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Local CME in equilibrium
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e Perturbative profile is qualitatively correct

e Profile is practically T" independent. Why?

x10—3

1 G =09 fm)-CL (Gev?)

eB (GeV?)

p,oE, 2 gas (T =0) T (MeV)
\\\ B 113
[ 155
162
4 G(z1=00fm) C ) (GeV?)
T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

e Use free results to model: HRG (p + % + Z7) vs free quarks (u + d + s).
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Dynamical CME

To avoid Bloch’s theorem global CME must be an out-of-equilibrium
phenomenon.

To calculate linear response (Kubo formulas), we avoid real-time
Schwinger-Keldysh formalism*’.

Instead use imaginary time and careful analytical continuation in frequency
space, to recover the spectral function .

We can also think in terms of spectral reconstruction (this is the lattice way)
G(1) = /dwg(w)K(w,T).

Disclaimer: perturbation theory is known to have issues for transport
peaks °, in principle resummations would be needed.
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Dynamical CME, perturbative results

Linear response functions to homogeneous but (Euclidean) time dependent p¢5

A3z

— — — 5 —/ — 5
G(T,.CC,T/,ZC/ — <J3(7-7 x)‘]O(T/7x )>B — G(T) — /7 J3(7-7$)‘]0(070>>B

After careful analytic continuation one finds for the spectral function

2 tanh &l
o(w) = « (%) wé(w) + O(w” — 4m2)m il V)

T wVw? — 4m2

The Kubo formula for the CME coefficient is

1 w
créei\(/l[E = — lim —Q( ) )

Shows perturbative IR divergence at w = 0, the Kubo formula limit does not exist.
The transport peak is expected to widen through interactions, resummations needed.
The same happens with the electric conductivity.
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Dynamical CME on the lattice
o hot directly accessible from lattice QCD

Spectral representation of Euclidean correlators

/-_/dw % K(r,w)

— —
Lattice Want Known

On the lattice: N; ~ O(10) ill-posed inverse problem.

Many methods on the market — applied to get other transport coefficients.

We are combining several methods to get a robust answer.

Stay tuned for full QCD results!
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Summary

e We discussed the chiral magnetic effect

— as a global current in equilibrium,
— as a local current in equilibrium,
— as a global current out-of-equilibrium.

e We learned from perturbation theory that UV regulator effects are important!
e It causes the global, equilibrium results to vanish, in accordance with Bloch’s theorem.

e The local, equilibrium result is non-vanishing, and has a weak temperature dependence.
e Perturbation theory allows us to understand this in terms of the HRG model.

e Out-of-equilibrium, perturbation theory might be useful to test numerical approaches.

e In full QCD spectral functions are a tough nut to crack, ask me about it before you go home!
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