A Phenomenological Estimate of the Binding Energy of the Tbc tetraquark

Mitja Rosina Faculty of Mathematics and Physics, University of Ljubljana and Institute Jožef Stefan, Ljubljana, Slovenia

Talk presented at the ACHT 2025: Austrian - Croatian - Hungarian Triangle Meeting May 5 - 7, 2025.

ABSTRACT

The discovery of the dimeson $T_{cc}+(1+)$ at CERN 2021 at the predicted energy supported the successful application of the quark model beyond 2-body and 3-body hadronic systems. Now we are eager to get more support by studying experimentally and theoretically heavier double-heavy tetraquarks such as T_{bc}^{0} whose properties are expected to be between the dimeson T_{cc}^{+} and compact tetraquark T_{bb}^{-} .

Different estimates are designed to guide (or mislead!) future experiments. We assume that the wave functions of the two light antiquarks around the diquark bc in the tetraquark are very similar to those around the heavy quark in $\Lambda_{\mathbf{b}}$ and that the 1/m corrections are neglected.

We predict that $T_{bc}^{0}(1+)$ is bound and $T_{bc}^{0}(0+)$ is not.

WE SHALL CONCENTRATE ON THE QUESTION:

- Is $T_{bc} = (b\overline{u})(c\overline{d})$ molecular (dimeson) ? like $T_{cc}^{+} = DD^{*} = (c\overline{u})(c\overline{d})$ Or is $T_{bc} = \overline{u}(bc)\overline{d}$ atomic (compact) ? like $T_{bb}^{-} = \overline{BB}^{*} = \overline{u}(bb)\overline{d}$
 - IT IS A CHALLENGE! T_{bc} lies inbetween T_{cc}^+ and $T_{bb}^$ and is a delicate test of popular quark models.

Is it like the H_2 molecule (covalent bond) or like the He atom (He nucleus \rightarrow bc diquark, electrons \rightarrow light quarks) ? The present study is qualitative and preliminary. The emphasis is on the relative importance of the atomic versus molecular configuration.

 $T_{bb} \rightarrow T_{bc} \rightarrow T_{cc}$

It could help us in theory (to choose the relevant parts of Hilbert space in detailed calculations in different quark models);

and in experiment (to look for relevant decay channels).

PHENOMENOLOGICAL ESTIMATE OF BINDING

PHENOMENOLOGICAL ESTIMATE OF BINDING

THE SUCCESSFUL CERN EXPERIMENT 2021 (THE BINDING ENERGY OF THE DD* "MOLECULE")

The tetraquark (mesonic molecule) T_{cc}^+ was produced in the proton-proton collision at the Large Hadron Collider and was detected as a narrow peak in the channel

 $T_{cc}^{+} \rightarrow D^0 D^{*+} \rightarrow D^0 D^0 \pi^+ \rightarrow (K^- \pi^+) (K^- \pi^+) \pi^+$

The peak position is **273 keV below the D^oD*+ threshold** (1683 keV below the D+D*^o threshold) The deduced **Breit-Wigner width is 410 keV. A more advanced model using a unitarised Breit-Wigner profile gives the peak at 360 keV below the D^oD*+ threshold and a width ~48 keV** (Effective range of T+cc and other parameters [LHCb, arXiv:2109.01056], Mikhail Mikhasenko).

Observation of T_{cc}⁺ state

LHCb-PAPER-2021-031

First observation of a same-sign doubly charmed tetraquark T_{cc}⁺

- Very narrow state in
 D⁰ D⁰ π⁺ mass spectrum
- Consistent with ccud tetraquark
- Mass very close to D^{*+}D⁰ mass thresholds
- Manifestly exotic
- Parameters of T_{cc}⁺
 - Fit structure with P-wave relativistic Breit-Wigner

$$\begin{split} \delta m_{\rm BW} &= -273 \pm \ 61 \pm \ 5 \, {}^{+11}_{-14} \, {\rm keV}/c^2 \,, \\ \Gamma_{\rm BW} &= 410 \pm 165 \pm 43 \, {}^{+18}_{-38} \, {\rm keV} \,, \end{split}$$

- Uncertainties stat, syst and due J^P = 1⁺ assumption
- Significance for signal > 10 σ
- Significance for $\delta m_{BW} < 0$ 4.3 σ

NEW

Recent LHCb results on exotic meson candidates Ivan Polyakov

28/07/2021

BINDING ENERGY OF THE DD* "MOLECULE"

In 2004 Janc & Rosina predicted a weakly bound dimeson Tcc+ - (D + D*) = - 0.6 MeV (Bhaduri potential) - 2.7 MeV (Grenoble AL1 pot.)

It is a great satisfaction that it has been finally detected and confirmed 17 years later in CERN in July 2021.

The model parameters in the nonrelativistic calculation fitted all relevant mesons and baryons.

A rich 4-body model space was used including gaussians of Jacobi coordinats of different optimized widths and positions.

$$V_{ij}^B = -\frac{\lambda_i^C}{2} \cdot \frac{\lambda_j^C}{2} \left(U_0 + \frac{\alpha}{r_{ij}} + \beta r_{ij} + \alpha \frac{\hbar^2}{m_i m_j c^2} \frac{e^{-r_{ij}/r_0}}{r_0^2 r_{ij}} \sigma_i \cdot \sigma_j \right),$$

r_{ij} = $|\mathbf{r}_i - \mathbf{r}_j|;$
Few-Body Systems 35,175-196, 2004

The presented **phenomenological estimate** is based on the assumption that the wave functions of the two light quarks around the heavy quark in Λc , Λ_b and around the antidiquark in the \overline{ccqq} , \overline{bcqq} and \overline{bbqq} are very similar.

This assumption implies that the heavy antidiquark in a colour triplet state acts just like a very heavy quark.

This assumption is supported by the experimental observation that many related masses differ by the same amount (essentially by the quark mass difference):

 $\tilde{B} - \tilde{D} = 3341 \text{MeV}, \ \tilde{B_s} - \tilde{D}_s = 3328 \text{MeV}, \ \Lambda_b - \Lambda_c = 3340 \text{MeV}.$

(The tilde means the hyperfine average between the scalar and vector meson.)

In order to get the diquark energy and mass we use the $Vqq = \frac{1}{2}Vq\overline{q}$ rule"

 $[p^{2}/2(b/2) + V_{bb}] \psi = \frac{1}{2} [p^{2}/2(b/4) + V_{b^{-}b}] \psi = E_{bb}\psi = \frac{1}{2} F(b/4),$

And similar for other diqarks

[A]: (color.color)=4/3 for $c\bar{c}$

=2/3 for cc

[B]: Flux tube model

Justiication:

Color singlet versus triplet (SU(3) Casimir operator)

At small angle is the

 $\mathbf{c} - \overline{\mathbf{c}}$ flux tube similar to two

c – c flux tubes

 $T_{bc} = \Lambda_b + \frac{1}{2} \left(\tilde{\Psi} - E_{c\bar{c}} \right) + E_{bc}$ = 5619 + ¹/₂ (3012 + 672) -280 = **7181 MeV** $\Delta T_{bc} = T_{bc} - B_0 - D_0 = T_{bc} - 7144 = 37 \text{ MeV} \quad (S=0)$ $\Delta T_{bc} = T_{bc} - B_{0}^{*} - D_{0} = T_{bc} - 7190 = -9 \text{ MeV} (S=1)$ or $T_{bc} = \Lambda_b + C + E_{bc}$ = 5619 + 1870 - 280 = 7214 MeV $T_{bc} - B_0 - D_0 = T_{bc} - 7144 = +70$ MeV $T_{bc} - B_0^* - D_0 = T_{bc} - 7190 = + 24 \text{ MeV}$

UNCERTAINTIES OF THE PHENOMENOLOGICAL ESTIMATES

1. Choice of quark masses:

Bhaduri: q=337, s=600, c=1870, b=5259 MeV

Bh/JR1* : q=337, s=600, c=1600, b=4941 MeV

- KR: q=309, s=482, c=1656, b=4989 MeV
- 2. Interpolation
- 3. Averages of spin-spin (chromomagnetic) interaction (It does not scale the same way as the radial V)

COMPARISON OF DIFFERENT CHOICES

(INTERPOLATION)	$\Delta {\rm T_{cc}}$	ΔT_{bb}	ΔT_{bc}	
Bhaduri masses:	+79	-141	+70	+24
" ,different averages:	+92	-128	+37	- 9
Karliner, Rosner masses:	+31	-181	+62	+16
Janc, Rosina 2001:	+97	-128		
"smaller masses:	+43	-167		
Karliner, Rosner(junctions)	: +125	- 89	+111	+65
Janc, Rosina (accurate):	-0.6	- 82		

DETECTION OF T_{bc}⁰

Unfortunately, the decay channels of T_{bc}^{0} are not so nice as in the case of T_{cc}^{+} with all charged final particles:

 $T_{cc}^{+} \rightarrow D^{0}D^{*+} \rightarrow D^{0}D^{0}\pi^{+} \rightarrow (K^{-}\pi^{+}) (K^{-}\pi^{+}) \pi^{+}$.

If $T_{bc}^{\ 0} > D^0 B^{*0} \implies \text{strong decay } T_{bc}^{\ 0} \to D^0 + B^{*0}$ If $T_{bc}^{\ 0} > D^0 B^0 \implies T_{bc}^{\ 0} \to D^0 B^{*0} \to D^0 B^0 \gamma \to (K^- \pi^+) (K^- \pi^+) \gamma$ If $T_{bc}^{\ 0} < D^0 B^0 \implies \text{weak decay (long lived)}$

For good statistics, a combination of many channels is needed! (Wait a few years!!!)

Weakly-decaying T_{bc}. Branching fractions

T_{bc}^{0} decay	\mathcal{B} estimation	analogous B-decays	\mathcal{B} , exp	T_b^0	decay	\mathcal{B} estimat	ion	analogous B/D -decays	\mathcal{B}, \exp
	b ightarrow D -	+ hadrons decay mod	es	$c \rightarrow s$ transition					
$D^0 D^0$	$10^{-3} \times f_b$			\overline{B}	${}^{0}K^{-}\pi^{+}$	$(4 \pm 1)\%$:	$\times f_c$	$D^0 \to K^- \pi^+$	$(3.95 \pm 0.03)\%$
	or $10^{-3} \times f_W$			B^-K	$-\pi^+\pi^+$	(7.5 ± 2.5)	$\% \times f_c$	$D^+ \rightarrow K^- \pi^+ \pi^+$	$(9.38 \pm 0.16)\%$
$D^0 D^+ \pi^-$	$(2.5-5.0) \times 10^{-3} \times f_b$	$B^- ightarrow D^0 \pi^-$	$(4.61 \pm 0.10) \times 10^{-3}$					$D_s^+ \to K^+ K^- \pi^+$	$(5.39 \pm 0.15)\%$
		$B^0 ightarrow D^+ \pi^-$	$(2.51 \pm 0.08) \times 10^{-3}$					$\Lambda_c^+ \to p K^- \pi^+$	$(6.28 \pm 0.32)\%$
		$B^0_s \rightarrow D^+_s \pi^-$	$(2.98 \pm 0.14) \times 10^{-3}$	$\overline{B}{}^{0}K^{-}\pi$	$+\pi^+\pi^-$	$(8 \pm 2)\%$	$\times f_c$	$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$(8.22 \pm 0.14)\%$
	2	$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	$(4.9 \pm 0.4) \times 10^{-3}$	$\overline{B}{}^{0}F$	$\sqrt{-\mu^+ \nu}$	$(3\pm 1)\%$:	$\times f_c$	$D^0 \to K^- \mu^+ \nu$	$(3.41 \pm 0.04)\%$
$D^{*0}D^{+}\pi^{-}$	$(5.2 \pm 0.5) \times 10^{-3} \times f_b$	$B^- \rightarrow D^{*0}\pi^-$	$(5.17 \pm 0.15) \times 10^{-3}$	$\overline{B}{}^{0}F$	$K^-\mu^+ X$	$(2 \pm 1)\%$	$ f_c $	$D^0 \rightarrow K^{*-} \mu^+ \nu$	$(1.89 \pm 0.24)\%$
$D^{*+}D^{0}\pi^{-}$	$(2.7 \pm 0.3) \times 10^{-3} \times f_b$	$B^0 \rightarrow D^{*+}\pi^-$	$(2.74 \pm 0.13) \times 10^{-3}$					$D^0 ightarrow K^- \pi^0 e^+ \nu$	$(1.6^{+1.3}_{-0.5})\%$
$D^+D^+\pi^-\pi^-$	$(1-8) \times 10^{-3} \times f_b$	$B^- \rightarrow D^+ \pi^- \pi^-$	$(1.07 \pm 0.05) \times 10^{-3}$	B^-K^-	$\pi^+\mu^+ \nu$	(3.5 ± 1.5)	$\% \times f_c$	$D^+ \rightarrow K^- \pi^+ \mu^+ \nu_{sum}$	$(3.65 \pm 0.34)\%$
		$B^0 \rightarrow D^+ \rho^{[\pi^-\pi^0]}$	$(7.6 \pm 1.2) \times 10^{-3}$				W exchange	ge in $bc \to cs$	
D0 D0	(0.0.1.0.1) 10.2	$B_s^0 \to D_s \rho^+_{[\pi^+\pi^0]}$	$(6.8 \pm 1.4) \times 10^{-3}$	D	${}^{0}K^{-}\pi^{+}$	$(5\pm4)\times$	$10^{-4} \times f_W$	-	—
$D^0 D^0 \pi^+ \pi^-{}_{NR}$	$(0.9 \pm 0.4) \times 10^{-3} \times f_b$	$B^0 \rightarrow D^0 \pi^+ \pi^-$	$(0.88 \pm 0.05) \times 10^{-3}$ $(1.24 \pm 0.18) = 10^{-2}$		D^+K^-	$(5\pm4)\times$	$10^{-4} \times f_W$		—
$D^{\circ}D^{+}\pi^{-}\pi^{\circ}_{NR}$	$(1.0 \pm 0.3)\% \times J_b$	$ \begin{array}{c} B \rightarrow D^{*}\rho \\ \overline{D}^{0} \rightarrow D^{+}\sigma^{-} \end{array} $	$(1.34 \pm 0.18) \times 10^{-2}$		$D^0 K^0_{ m S}$	$(5\pm4)\times$	$10^{-4} \times f_W$		—
	$b \rightarrow D$	$B^{*} \rightarrow D^{*} \rho_{$	$(0.76 \pm 0.12) \times 10^{-2}$	$b \rightarrow u$ transition					
$D^0 D^+ \mu^- \nu$	$(2.3 \pm 0.1)\% \times f_{b}$	$B^- \rightarrow D^0 \mu^- \nu$	$(2.30 \pm 0.09)\%$	L	$D^{0}\pi^{+}\pi^{+}$	$(3\pm2)\times$	$10^{-5} \times f_b$	$B^+ ightarrow \pi^+ \pi^0$	5.5×10^{-6}
22 p 1	(10 ± 0.1)/0 · · J0	$\overline{B}{}^0 \rightarrow D^+ \mu^- \nu$	$(2.24 \pm 0.09)\%$		$D^+\pi^-$	$(3\pm 2) \times$	$10^{-5} \times f_b$	$B^+ \rightarrow \pi^+ \pi^+ \pi^-$	1.5×10^{-5}
$D^{*0}D^+\mu^- \nu$	$(5.1 \pm 0.2)\% \times f_b$	$B^- \rightarrow D^{*0} \mu^- \nu$	$(5.30 \pm 0.09)\%$	$D^+\pi$	$\pi^+\pi^-\pi^-$	(3 ± 2) ×	$10^{-5} \times f_b$	$B^0 \to \rho^+ \pi^-$	2.3×10^{-5}
$D^0 D^{*+} \mu^- \nu$	$(5.1 \pm 0.2)\% \times f_b$	$\overline{B}{}^0 ightarrow D^{*+} \mu^- u$	$(4.97 \pm 0.12)\%$						
$D^0D^+\mu^-X$	$(2-8)\% \times f_b$	$B_{min}^{+/0} \rightarrow D^+ \mu^- X$	$(2.6 \pm 0.5)\%$		Cha	nnel	Mye	stimation	Steve's
		$B_{\rm mir}^{+/0} \rightarrow D^0 \mu^- X$	$(7.3 \pm 1.5)\%$		Criu	initer	iviy c	Junation	Oleve 5
		$B^+ \rightarrow D\mu^- X$	$(9.6 \pm 0.7)\%$						number
		$\overline{B}{}^0 \to D\mu^- X$	$(9.3 \pm 0.8)\%$				10	00.0.010/	10/
	$b ightarrow J/\psi$ -	+ hadrons decay modes			DD+n ((0,	0.02-0.2)% 1%	
$J/\psi D^+K^-$	$(1.0 \pm 0.1) \times 10^{-3} \times f_b$	$B^ \rightarrow J/\psi K^$	$(1.02 \pm 0.02) \times 10^{-3}$		7/11	5 . L	(0.0	1 0 00)0/	10/
$J/\psi D^0 K_{\rm S}^0$	$(0.45 \pm 0.05) \times 10^{-3} \times f_b$	$\overline{B}{}^0 \to J/\psi K^0_{\rm S}$	$(0.89 \pm 0.02)/2 \times 10^{-3}$		J/ΨL	J+n	(0.0	11-0.03)%	1%
$J/\psi D^0 K^{*-}$	$(1.3 \pm 0.2) \times 10^{-3} \times f_b$	$B^- \rightarrow J/\psi K^{*-}$	$(1.43 \pm 0.08) \times 10^{-3}$		D.1.			(0,0)0/	10/
		$B^0 \rightarrow J/\psi K^{*0}$	$(1.27 \pm 0.05) \times 10^{-3}$		B+n			(3-6)%	1%
		$B_s^0 \to J/\psi\phi$	$(1.04 \pm 0.04) \times 10^{-3}$ (0.22 ± 0.06) × (0.10 ±		DL			105	
$U_{0} D_{0} V_{-} = +$	$(0.2 1.2) \lor 10^{-3} \lor f$	$\Lambda_b^{\omega} \to J/\psi \Lambda(1520)$ $\overline{D}^0 \to U/\psi K^- \pi^+$	$(0.32 \pm 0.06) \times (0.19 \pm 0.10) \times 10^{-3}$		Dn			~10-5	
$J/\psi D K h NR$	$(0.3 - 1.2) \times 10^{\circ} \times J_b$	$B^{0} \rightarrow J/\psi K^{+} K^{-} m$	$(1.13 \pm 0.03) \times 10^{-3}$ $(0.79 \pm 0.07) \times 10^{-3}$			-		1	
		$\Lambda^0_s \rightarrow J/\psi n K^-$	$(0.79 \pm 0.07) \times 10^{-3}$ $(0.32 \pm 0.06) \times 10^{-3}$			Q	uestior	i to theory:	
		$m_b \neq o/\psi pm$ sum	(0.02 1 0.00) × 10		C	on ve	u pr	wido uc wi	th
f	$= 0.22 \pm 0.04 f =$	072+004 f	$= 0.06 \pm 0.04$			an yu	ju pro	JVILLE US WI	ui
'b	, - 0.22±0.0+, 1 _c -	0.12±0.04, 1 _W	, 0.00±0.04,			bet	ter es	stimates?	

Ivan Polyakov, CERN / LHCb mini-workshop. Tbc

Search for T_{bc}. Prospects for Run3

Ivan Polyakov, CERN

T_{bc} at LHCb mini-workshop 5 October 2023 Expected yields: $\sigma = 20 \text{ nb}$ $L = 20 \text{ fb}^{-1}$ (Run3) yield $\approx 1 - 30 \text{ per channel}$

Thank you

for your attention!

The "Vdd = $\frac{1}{2}$ Vdd rule" $\frac{1}{2} E_{b^{-}b} = \frac{1}{2} Y - b \equiv \frac{1}{2} F(\frac{1}{2} b) = -529 MeV$ $\frac{1}{2} E_{b-c} = \frac{1}{2} (B_{c} - b - c) \equiv \frac{1}{2} F((b^{-1} + c^{-1})^{-1})$ = -428 MeV $E_{bc} = \frac{1}{2} F(\frac{1}{2} (b^{-1} + c^{-1})^{-1}) = -276 \text{ MeV}$ $\frac{1}{2} E_{c-c} = \frac{1}{2} \tilde{\psi} - c \equiv \frac{1}{2} F(\frac{1}{2} c) = -336 MeV$ $\frac{1}{2} E_{c-s} = \frac{1}{2} (\tilde{D}_{s} - c - s) \equiv \frac{1}{2} F((c^{-1} + s^{-1})^{-1})$

= −197 MeV

KR = Karliner, Rosner, Phys. Rev. D 102, 094016, 2020

They assign S = 165 MeV to each string junction

and take into account the spin-spin ("chromomagnetic") term

meson (0×S) baryon (1×S) tetraquark (2×S)

REFERENCES:

- JR1 = Janc, Rosina, Few-Body Systems 31,1-11,2001
- JR2 = Janc, Rosina, Few-Body Systems 35,175-196, 2004
- KR = Karliner, Rosner, Phys. Rev. D 102, 094016, 2020
- Bh = Bhaduri, Cohler, Nogami, Nuovo Cim. A65, 376, 1981
- Grenoble = Silvestre-Brac, , Few-Body Systems 20, 1 1996