

University of Szeged

Department of Oncotherapy PI: Katalin Hideghethy

National Laser-initiated Transmutation Laboratory PI: Karoly Osvay

National Laser-Initiated

Contribution to EuPRAXIA PP

WP11 - Applications

Integrated Radiobiological Research, with the use of zebrafish models

Exploring laser-based neutron sources as a possible user station

WP12 – Laser technology

Development of diagnostics Pilot experiment for testing new ideas Component tests

University of Szeged

Department of Oncotherapy

Katalin Hideghethy's group

National Laser-Initiated Transmutation Laboratory University of Szeged

Previous and ongoing projects

Neutron RBE definition using ZF embryo model

RBE_{Fission}=LD₅₀f/LD₅₀n=20/2=10

INTERNATIONAL JOURNAL OF RADIATION BIOLOGY	Taylor & Francis
https://doi.org/10.1080/09553002.2018.1511928	Taylor & Francis Group
	Check for updates

A novel vertebrate system for the examination and direct comparison of the relative biological effectiveness for different radiation qualities and sources

E. R. Szabó^a, Z. Reisz^b, R. Polanek^a, T. Tökés^a, Sz. Czifrus^c, Cs. Pesznyák^c, B. Biró^d, A. Fenyvesi^d, B. Király^d, J. Molnár^d, Sz. Brunner^a, B. Daroczi^e, Z. Varga^f and K. Hideghéty^{3,f}

^aExtreme Light Infrastructure - Attosecond Light Pulse Source, ELI-HU Non-Profit Ltd, Szeged, Hungary, ^bDepartment of Pathology, University of Szeged, Szeged, Hungary, ^bBudapest University of Technology and Economics Institute of Nuclear Techniques, Budapest, Hungary, ^dHungarian Academy of Sciences Institute for Nuclear Research (MTA Atomki), Debrecen, Hungary, ^eDepartment of Internal Medicine, Division of Geriatrics, University of Debrecen, Debrecen, Hungary, ^fDepartment of Oncotherapy, University of Szeged, Szeged, Hungary

> ARTICLE HISTORY Received 17 February 2018

Revised 6 July 2018

Accepted 14 July 2018

ABSTRACT

Purpose: The recent rapid increase of hadron therapy applications requires the development of high performance, reliable in vivo models for preclinical research on the biological effects of high linear energy transfer (LET) particle radiation.

Aim: The aim of this paper was to test the relative biological effectiveness (RBE) of the zebrafish embruo system at two neutron facilities

RBE_{cyclotron}=LD₅₀f/LD₅₀n=20/8 =2.5

Previous and ongoing projects

Collaboration with HZDR and OncoRay Dresden: proton irradiation, DRACOproton irrad, FLASH experiments

PLOS ONE

RESEARCH ARTICLE

Radiobiological effects and proton RBE determined by wildtype zebrafish embryos

Emilia Rita Szabó¹, Michael Brand¹, Stefan Hans², Katalin Hideghéty¹, Leonhard Karsch^{3,4}: Elisabeth Lessmann⁴, Jörg Pawelke^{3,4}, Michael Schürer^{4,5}, Elke Beyreuther^{0,3,4}

1 Attosecond Light Puise Source, ELI-HU Nonprofit Ltd., Szegad, Hungary, 2 Center for Melecular and Cellular Bioengeneering (CMCB), DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany, 3 Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany 4 OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hespital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany, 5 National Center for Tumor Diseases (NCT), partner sita Dresden, Germany

* E.Beyreuther@hzdr.de

Abstract

OPEN ACCESS

Citation: Szabó ER, Brand M, Hans S, Hideghéty K, Karsch L, Lessmann E, et al. (2018) Radiobiological effects and proton RBE determined by wildtype zebrafish embryos. PLoS ONE 13(11): e0206879. <u>https://doi.org/10.1371/journal.</u> pone.0206879.

The increasing use of proton radiotherapy during the last decade and the rising number of long-term survivors has given rise to a vital discussion on potential effects on normal tissue. So far, deviations from clinically applied generic RBE (relative biological effectiveness) of 1.1 were only obtained by *in vitro* studies, whereas indications from *in vivo* trials and clinical studies are rare. In the present work, wildtype zebrafish embryos (*Danio rerio*) were used to characterize the effects of plateau and mid-SOBP (spread-out Bragg peak) proton radiation relative to that induced by clinical MV photon beam reference. Based on embryonic survival survival studies are and the study of the studies of the study of the

	mid-SOBP	plateau
RBE _{30Gy} ± se	1.60 ± 0.32	1.41 ± 0.08
RBE _{20Gy} ± se	1.20 ± 0.04	1.13 ± 0.08

Previous and ongoing projects

In vivo experiment at laser driven proton facility

Thomas F. Rösch, Zoltán Szabó, Daniel Haffa, Jianhui Bin, Szilvia Brunner, Franz S. Englbrecht, Anna A. Friedl, Ying Gao, Jens Hartmann, Peter Hilz, Christian Kreuzer, Florian H. Lindner, Tobias M. Ostermayr, Róbert Polanek, Martin Speicher, Emília R. Szabó, Derya Taray, Tünde Tőkés, Matthias Würl, Katia Parodi, Katalin Hideghéty and Jörg Schreiber **A feasibility study of Zebrafish embryo irradiation with** Iaser accelerated protons – Scientific Reports - submitted

The proton spot size can be reduced to micrometre dimensions without significant loss of particle numbers. Together with the short bunch duration of the order of nanoseconds and below, this would enable very high peak dose rates and highly localized irradiation in microscopic areas.

ZFmodelprovidesreliablequantitativebiologicalendpoints(macro-andmicro-morphologicalchangesmolecularprocesses).

Integradted Radiobiological Research (IRR) within EUPRAXIA

ZF embryo model can be used, as part of IRR at different centers for cross comparison of biological effects of plasma accelerated ionizing radiation beams in operation at different sites

University of Szeged

National Laser-initiated Transmutation Laboratory

(laboratories at Dept Optics and in ELI-ALPS)

Karoly Osvay

Idle

LASER DEVELOPMENTS

Exploring new amplification schemes

Polarization-encoded chirped pulse amplification in Ti:S

Cao et al, Las. Phys. Lett. 15, 045003 (2018)

Highly efficient, cascaded extraction optical parametric amplifier

Efficient amplification of energetic sub-6fs via OPCPA

Cao et al., Optics Express 26, 7516 (2018)

Development of diagnostics

CEP drif measurement of ps pulses

CEP noise measurement upon PE-CPA

--- Conventional

0 800 8[.] Wavelength (nm) PE

820

810

– Noise limit

780

790

Jojart et al, Opt.Lett. 39, 5914 (2014)

Single-shot measurement of angular dispersion

Börzsönyi et al, OL **38,** 410 (2013)

LASER DEVELOPMENTS

Testing optical components

Towards on-line damage monitoring

Somoskői et al., Laser Phys. 25, 056002 (2015) Somoskői et al., Laser Phys. 30, 046002 (2020)

Δn-106

Δn-10⁶

×10¹⁸

×10¹⁸

800

Wavelength (nm)

800

Wavelength (nm)

900

900

Gain induced phase changes in ti:sapphire

Linear and nonlinear dispersion measurements

Borzsonyi et al, Appl.Sci. 3, 515 (2013) - reiew

Nagymihaly et al, Opt. Expr. **27** (2019) 1226

Laser development in the TeWaTi lab In cooperation with the Cooperative Technologies National Laboratory

High stability, long term operation

Energy: 0.84 %

Pulse duration: <1%

Gaal et al, Appl.Sci. (2024) submitted

Development of a 200nm thin liquid leaf target system

Thickness measurement (in air and in vacuum)

Mechanical stability / resonance measurement

State of the art neutron generation at 10 Hz repetition rate (~6 hours)

~1.5×10⁵ n/s

cut-off for the day: 0.98±0.16 (MeV)

Deuteron acceleration from liquid

- at 10 Hz, SEA laser
- at 230mW (80mW) average power
- 200nm D_2O leaf + 0.1mm C_2D_4

Neutron generation

- 200nm D_2O leaf + 0.1mm C_2D_4
- fusion neutron spectra peaks ~3 MeV

Peak yield detected 2023/24 at 1kHz : ~10⁸ n/s

- at 100W (20W) average power

First radiobiology experiment with laser-generated neutrons

First radiobiology experiment with laser-generated neutrons

Apoptotic cell density

