

Wetterich's equation for regularised QFTs and general probability measures

[Ziebell, 2023]

Jobst Ziebell FMI - FSU Jena 16th May, 2025

FMI - FSU Jena

Image: A math a math

What is this about?	The Big Picture	The RG Equation	Example	To Regularise or not to Regularise	Outlook
000	000000		000000	000	00

Outline

- **1** What is this about?
- 2 The Big Picture
- 3 The RG Equation
- 4 Example
- 5 To Regularise or not to Regularise
- 6 Outlook

• • • • • • • • • • • •

Path Integrals

Scalar Quantum Field Theories as Measures (Glimm & Jaffe)

- μ a Borel probability measure on a distribution space, typically $S'(\mathbb{R}^d)$ or $\mathcal{D}'(\mathbb{R}^d)$.
- + a couple of other axioms
- Free fields modelled as Gaußian measures

Path Integrals

Free Fields are boring!

 (Wick-rotated) Feynman path integrals suggests that interactions should be modelled as densities, i.e.

$$\nu = (-\exp\circ J) \cdot \mu \tag{1}$$

• • • • • • • • • • • •

where *I* would typically be a point-local polynomial in the field, e.g. $J(\phi) = g \int_{\mathbb{R}^d} \phi(x)^4 d^d x$.

- However, μ is not supported on a function space \implies *J* is defined on a zero-measure subset
- How to extend J, resp. can it be extended?

Path Integrals

Regularisation & Renormalisation

 \blacktriangleright Regularise in some way (e.g. UV/IR cutoffs) $\implies \mu_{\rm reg}$ lives on a function space. Then

$$\nu = (-\exp\circ f) \cdot \mu_{\rm reg} \tag{2}$$

is fine.

Advertisement: Wilsonian RG

'Family (ν_{η}) of measures satisfying certain compatibility conditions always has a UV limit' – [arXiv:2502.16319: Laszlo, Tarcsay, Ziebell]

• • • • • • • • • • • •

What is a Density anyway?

The Onsager-Machlup Function

'Let μ be a measure on a metric space X and let $K(x, \epsilon)$ be the closed ball of radius ϵ centred at x. In diverse applications one has to study the existence of the following limit:

$$\lim_{\epsilon \to 0} \frac{\mu\left(K(a,\epsilon)\right)}{\mu\left(K(b,\epsilon)\right)} = I(a,b)$$
(3)

' - [Bogachev: Gaussian Measures]

<ロト < 四ト < 三ト < 三ト

What was the Density?

Example

▶ $\mu = (\exp \circ - f) \cdot \lambda$ on \mathbb{R} with f continuous, λ the Lebesgue measure.

$$\Rightarrow I(a,b) = \exp[f(b) - f(a)]$$

$$\blacktriangleright \implies J(a) = f(0) - \ln I(a, 0).$$

Density \sim OM Function

Beware: Even equivalent metrics may produce different OM functions! [Ayanbayev, Klebanov, Lie, Sullivan: 2021]

イロト イ理ト イヨト イヨト

Wetterich RG I

The (regularised) Setup

Partition Function:

$$Z_{k}(\phi) = \frac{\int_{X} \exp\left[\phi\left(x\right) - J\left(x\right) - \frac{1}{2}B_{k}\left(x,x\right)\right] d\mu\left(x\right)}{\int_{X} \exp\left[-J\left(x\right) - \frac{1}{2}B_{k}\left(x,x\right)\right] d\mu\left(x\right)} =: \frac{\dots}{N_{k}}$$
(4)

- ► $X = S(\mathbb{R}^d)$, μ a Gaußian measure, $\phi \in X^*$, J 'sufficiently nice'
- ► B_k measurable bilinear functionals, with $B_k = 0$, $\lim_{k\to\infty} B_k(x, x) = \infty$ 'sufficiently fast'

イロト イロト イヨト イヨ

Wetterich RG II

The Effective Average Action

 $\blacktriangleright W_k = \ln \circ Z_k$

For every $h \in H(\mu)$ (Cameron-Martin space of μ),

$$\Gamma_{k}(h) = \sup_{\phi \in X^{*}} \left[\phi(h) - W_{k}(\phi)\right] - \frac{1}{2} B_{k}(h, h)$$
(5)

$$\implies \lim_{k \to \infty} \Gamma_k(h) = \frac{1}{2} \langle h, h \rangle_{H(\mu)} + J(x) - J(0) .$$
(6)

FMI - FSU Jena

イロト イポト イヨト イヨ

Wetterich RG II

The Effective Average Action

 $\blacktriangleright W_k = \ln \circ Z_k$

▶ For every $h \in H(\mu)$ (Cameron-Martin space of μ),

$$\Gamma_{k}(h) = \sup_{\phi \in X^{*}} \left[\phi(h) - W_{k}(\phi)\right] - \frac{1}{2} B_{k}(h, h)$$
(7)

$$\implies \lim_{k \to \infty} \Gamma_k(h) = \boxed{\frac{1}{2} \langle h, h \rangle_{H(\mu)} + J(x)} - J(0) . \tag{8}$$

a.k.a. the (regularised) classical action
 a.k.a the Onsager-Machlup function − ln *I*(*h*, 0) of (exp ∘ − *J*)µ

Wetterich RG III

Some Abbreviations

•
$$(X^k, \mathcal{A}^k, m_k)$$
 a σ -finite measure space
• $U^k : X^k \to (H(\mu)^*)_{\mathbb{C}}, x \mapsto U^k_x$
 $\forall h \in H(\mu) : \frac{\mathrm{d}}{\mathrm{d}k} B_k(h, h) = \int_{X^k} \left| U^k_x(h) \right|^2 \mathrm{d}m_k(x)$
(9)

The RG Equation

$$\frac{\mathrm{d}}{\mathrm{d}k}\Gamma_{k}\left(h\right) = \frac{1}{2}\int_{X^{k}}\overline{U_{x}^{k}}\left[\left(D_{h}^{2}\Gamma_{k}+B_{k}\right)^{-1}\left(U_{x}^{k}\right)\right]\mathrm{d}m_{k}\left(x\right) + \frac{\mathrm{d}}{\mathrm{d}k}\ln N_{k}$$
(10)

What is this about? 000 Example 000000

イロト イヨト イヨト イ

Features

Really Cool Things

- An infinite-dimensional PDE
- Except for N_k -part, the form of the equation depends only on B_k
- *N_k*-part is independent of *h*
- Well-defined boundary condition

What is this about? 000 Example 000000

イロト イポト イヨト イヨ

Features

The Reverse Programme

- An infinite-dimensional PDE with boundary condition
- Which boundary conditions admit solutions down to k = 0?
- Uniqueness of solutions?

The Massive Free Scalar Field

Let μ be defined by

$$\int_{\mathcal{S}(\mathbb{R}^d)'} \exp\left[i\mathcal{T}(\phi)\right] \mathrm{d}\mu\left(\mathcal{T}\right) = \exp\left[-\frac{1}{2}\int_{\mathbb{R}^d} \frac{\tilde{\phi}\left(-p\right)\tilde{\phi}\left(p\right)}{p^2 + m^2} \mathrm{d}^d p\right] \quad (11)$$

for every $\phi \in \mathcal{S}(\mathbb{R}^d)$ (Bochner-Minlos).

The Interaction

Define $J(\phi) = \lambda \int_{\mathbb{R}^d} \phi^4$.

<ロト < 四ト < 三ト < 三ト

Jobst Ziebell

How to Regularise?

Regularisation

- Define regulator as continuous linear map $\mathcal{R} : \mathcal{S}'_{\beta}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$
- Consider the pushforward measure $\nu = \mathcal{R}_* \mu$ on $\mathcal{S}(\mathbb{R}^d)$

An Example

$$\mathcal{R}T = \chi \cdot (\xi * T) \tag{12}$$

Image: A match the second s

with

$$\chi (x) = \exp\left[-\frac{\Lambda_{\rm IR}^2}{2}x^2\right]$$

$$\xi (x) = \left(\frac{\Lambda_{\rm UV}^2}{2\pi}\right)^{d/2} \exp\left[-\frac{\Lambda_{\rm UV}^2}{2}x^2\right]$$
(13)

Note, $w - \lim_{\Lambda_{\text{UV}} \to \infty, \Lambda_{\text{IR}} \to 0} \mathcal{R}T = T$ for all $T \in \mathcal{S}'(\mathbb{R}^d)$.

イロト イポト イヨト イヨト

Convex Conjugation

The Method of Proof

- $\blacktriangleright \text{ Let } W_k(T) = \ln Z_k(T)$
 - \Rightarrow *W*_k is convex ('trivial' from measure theory)
 - \Rightarrow DW_k is injective (almost 'trivial' Gaußian measures)
 - \Rightarrow W_k extends to closure of \mathcal{S}'_β in $L^2(\nu)$ ('trivial' Gaußian measures)
 - \Rightarrow range of DW_k is all of $H(\nu)$ the 'Cameron-Martin space' of ν (tricky)

To Regularise or not to Regularise

・ロト ・ 日 ・ ・ ヨ ・ ・

The Effective Average Action

Straightforward Formula

$$\Gamma_{k}(\phi) = (DW_{k})^{-1}(\phi)(\phi) - W_{k}\left((DW_{k})^{-1}(\phi)\right) - \frac{1}{2}B_{k}(\phi)(\phi)$$
(14)

FMI - FSU Jena

What is this about? 000	The Big Picture	The RG Equation	Example 0000●0	To Regularise or not to Regularise 000	Outlook 00
FRGE					

The Flow Equation

Usually, $B_k \rightarrow R_k$ with R_k function in Fourier space. Then,

$$\partial_{k}\Gamma_{k}(\phi) = \frac{1}{2} \operatorname{Tr}_{L^{2}(\mathbb{R}^{d})} \left\{ (\partial_{k}R_{k}) \left[\mathcal{F} \circ \mathrm{D}_{\phi}^{2}\Gamma_{k} \circ \mathcal{F}^{-1} + R_{k} \right]^{-1} \right\} + \partial_{k} \ln N_{k}$$
(15)

and

$$\lim_{k \to \infty} \Gamma_k(\phi) = \frac{1}{2} \langle \phi, \phi \rangle_{H(\nu)} + J(\phi) .$$
 (16)

▲□▶ ▲圖▶ ▲園▶ ▲園▶ -

<ロト < 四ト < 三ト < 三ト

Wait, Where are the Counterterms?

In four Dimensions

- Counterterm $-\Delta m^2 \int_{\mathbb{R}^4} \phi^2$ (among others) should be added to J
- ▶ -J blows up since $\lambda \int_{\mathbb{R}^4} \phi^4$ cannot control $\Delta m^2 \int_{\mathbb{R}^4} \phi^2$
- Still fine, since

$$\int_{\mathcal{S}} \exp\left[-\lambda \int_{\mathbb{R}^{4}} \phi^{4} + \Delta \textit{m}^{2} \int_{\mathbb{R}^{4}} \phi^{2}\right] \mathrm{d}\nu\left(\phi\right) < \infty$$

for all $\Delta m^2 > 0$. [Janssen, Hinrichs, Ziebell: 2023].

• • • • • • • • • • • •

Do We Really Need to Regularise?

Taking the Limit regularisation $\rightarrow 0$

- Corresponding measures converge if corresponding family Γ₀^{reg} converges in 'complicated sense from paper'.
- Does the equation itself also converge?
- What about the boundary condition? (Renormalisation suggests infinities)

• • • • • • • • • • • •

Do We Really Need to Regularise? II

Can we Derive the Equation for Other Measures μ ? (WIP)

Problem of domain of Γ_k

Candidates: kernel of μ ? Lusin affine kernel of μ , etc.

- Differentiability properties of Γ_k
 - Correspondence to minimisation properties of W_k
 - W_k on a larger domain than X^* (A closure in some topology?)
- Compatibility with repsect to k-differentiation
 - Sufficiently uniform differentiability of Γ_k

Do We Really Need to Regularise? III

Can we Derive the Equation for Other Measures μ ? (WIP)

- What happens to the boundary condition?
 - OM-functions do not generally exist
 - Even when they do, their domains are not necessarily vector spaces

The 'non-regularised classical action' should not exist either!

Are there divergences e.g. like

$$\lim_{k \to \infty} \frac{D^2 \Gamma_k(h, h)}{k^2} \in \mathbb{R} \setminus \{0\} ?$$
(17)

Connection to behaviour of boundary condition in limit regularisation $\rightarrow 0$.

What is this about?

Example 000000

Outlook

Further Directions

- Application to nonrelativistic problems (in progress)
 - ► UV limit well understood ⇒ study convergence of RG equation and boundary conditions
- Fermions? (Non-commutative Probability?)
- Coupled systems?