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Introduction




What is the question if the answer is particle physics?

The question: what is the world made of and

what holds it together, i.e., what are the laws of "J m‘fw‘ ‘J" ‘:‘
Nature governing the smallest length scales? ® Fe e t:J
e What are the basic building blocks of = —
matter?

* What is the nature of interactions between
them?

Our best answer so far: the Standard Model of
elementary particle physics

¢ 12 elementary fermions (6 leptons + 6
quarks)

* 3 basic gauge interacions (electromagnetic,
weak, strong) + Higgs mechanism




The challenge

The Standard Model is very successful at describing a wide array of particle physics
phenomena.

Yet, it cannot be the final description of Nature, since it leaves unanswered some great
questions:

* How does gravity work at microscopic scales?

* What is dark matter and dark energy?

e Why are we made of matter and not antimatter (baryogenesis)?

*  Why are neutrinos so light?
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Where do we stand?

Large Hadron Collider (LHC):

CMS Preliminar

spectacular confirmation of the SM! Eof-
 Basic processes (W, Z production) gma‘
measured to sub-percent accuracy ik T
. . % :‘ *"'YiA‘ "e H
So far no direct signs of beyond Standard B - 10 | ak
Model (BSM) physics . ]

e Typically huge backgrounds

However, we have only seen a small R
amount of the total expected data

¢ HL-LHC: increase integrated

luminosity by a factor of 10 beyond
LHC design value

Luminosity [cm?s?]
Integrated luminosity [fb?]

* We have gathered only ~ 10% of all
data foreseen for the complete LHC
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Direct detection vs. indirect signals

How do we best exploit the physics potential of LHC?

¢ Two Higgs Doublet Models

H/A = 1~ expected exclusion (95% C.L)

(2HDM) are a well-motivated class SI0ATLAS 3ab ' CMS3abt = - ATLAS36.1h-' JHEP 01(2018)055]
Of BSM mOdeIS i;: - - CMS 359" JHEP 09(2018)007]
[
50 (125) rates A A(12Z5 =) Gev [T0 T T T ]
. ATLAS 36,1 b & CMS 35.9b" i 14 Tev ]
¢ They generally predict new F110 ATLAS 3ab' & OMS 3 b ’ 1
elementary scalar particles = direct i 4 1
searches [ ] #

tan 3

e Higgs couplings can deviate from
their SM values = precision
measurements FZZZ

T IR

A

with YRI18 syst. uncert.

%7///”ew

e At the LHC the two search .
- 500 1000 1500 2000 2500 3000
strategies are complementary: My [GeV]
they are sensitive in different
regions of parameter space.

[ATLAS coll., ATL-PHYS-PUB-2022-018]

New Physics can show up directly or in precision measurements: precision is key!



A recent lesson

Early measurements of the pp — WW cross section at LHC
« ATLAS @ 8 TeV [ATLAS-CONF-2014-033]

T T
ATLAS Preliminary

o(pp — WW) = 71.47%2 (stat) 15,% (syst) 752 (lumi) pb suww Jrat=z0an"
Lo Vs=8TeV
» Standard Model predictions at NLO oo mem ww

onLo(pp — WW) = 58.7t32'97 pb MSTW2008 W&
Data (= stat. = tot.)
— 714212 "%5pb
ATLAS-epWZ12 W { ® —— Stat
Statssyst
L

NNPDF23  M4M

e Similar discrepancy at CMS and at 7 TeV

[A(data/NLo, ATLAS+CMS)~30] o e e o

Great! Signal of a new particle (supersymmetric chargino) being produced.

e [ contribution from chargino pair
production

° m(xT) =110 GeV

/5 Gev

w0 100 120 BUT! Is the theoretical modelling precise

Pr i) [GeV]
?
[Phys. Rev. D 87 (2013) 3, 031701] enough?



A recent lesson

Theoretical developments

 Including some new contributions previously neglected in the computation (NNLO
QCD corrections) increases the prediction by ~ +10%.
[Phys. Rev. Lett. 113 (2014) 21, 212001]

Tinclusive [ D] o/onto — 1
V5 8 TeV 13 TeV 8 TeV 13 TeV
LO 425.41(4) 287 778.99 (8) oA | —31.8%  —35.4%
NLO 623.47(6) T35%  1205.11(12) T30 0 0
NLO' 635.95(6) 5% 1235.82(13) T5U% | + 2.0%  + 25%
NLO'+gg | 655.83(8) Tase  1286.81(13) *35% | + 52%  + 6.8%
(NNLO — [690.4(5) 22%  1370.9(11) 257 [(10.7%  +13.8%)

[JHEP 08 (2016) 140]

e These previously neglected terms also play an important role in the proper modelling
of other aspects of the analysis (e.g., the jet veto used to suppress backgrounds).



A recent lesson

The final comparison at 8 TeV and 13 TeV

T T T T T T
ATLAS ATLAS
5=8Tev, 203 10" e WW - v v pp — ey s=13TeV, 36.1 b
—— Normalized Data
—— stat Data 2015+2016
statssyst 379+ 5 (stat.)= 27 (syst.) fb
N WW - ey ev MATRIX NNLO (incl LO gg— WW)
approx. NNLO+NNLL . "
0 5 o i) 357+ 4 (PDF)= 20 (scale) 1b
approx. NNLO MATRIX NNLO + NLO gg—> WW
- [arXiv:1408.5243] 368 = 4 (PDF)= 20 (scale) fb
NNEO p,-Fesum [ ] WWoptvpy (MATRIX NNLO + NLO gg)® NLO EW
[arXiv:1407.4481] ! 347 = 4 (PDF)= 19 (scale) fb
1 1 1 1 1 | L
0.4 06 08 1 12 14 500 550 300 ~3%0 400
Ratio of predictions to measurement Integrated fiducial cross-section [fb]

[JHEP 09 (2016) 029] [Eur. Phys. J. C 79 (2019) 10]

We did not find a new particle, but we did learn important lessons:

Precise and properly controlled theoretical predictions are of essential importance.

e Terms that are neglected at the usual theoretical accuracy of NLO (i.e.,
higher-order perturbative corrections) can play a pivotal role.



The theory challenge

The High Luminosity LHC program (3 ab~! integrated luminosity per experiment) is
expected to measure Higgs boson production cross sections and couplings to an accuracy
of ~ 2-4%.

° ThIS is precise enough to constrain 15 =14 TeV, 3000 o per experiment 15 = 14 TeV, 3000 5" per experiment
[ Total ATLAS and CMS [ Total ATLAS and CMS
the parameter spaces of many T Sutsal LG projcton —satstcal 4G projecton
—— Experimental —— Experimental
— Theoy Uncorainy (4] — Theory Unceriainy 24
BSM models. S e
16070812 |y 17 08 07 13
e The forecasts in the presented s | !
figures assume a substantial == aenm | NE—] 2t 05 1121
decrease of current theoretical = wonn | CE
uncertainties. o= =il
002 004 006 008 01 012 014 0 002 004 006 008 01 012 014
. The role Of theoretical Expected relative uncertainty Expected uncertainty

uncertainties is especially
noteworthy for the couplings to t-
and b-quarks and gluons.

[ATLAS coll., ATL-PHYS-PUB-2022-018]
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The theory challenge

The uncertainty budget for Higgs production in gluon fusion as a function of energy

* 6(PDF + as) and §(PDF — TH): : : . : : .
uncertainties related to our 2 L/’
knowledge of proton structure 10 ]

e §(scale) and §(EW): uncertainties \;_/mmm’)/

coming from uncalculated of = ]
higher-order corrections in theory Nes—— ———————

S(EW)

sl

6/610ta1x100%

. . .
predlctlons S(PDF-TH)
. . 2 ]
e §(1/m) and (¢, b, c): uncertainties d(scale)
H H H (U= L L L I 1
associated with neglecting quark ; » TS o 20 o0
masses in the theory predictions Collider Energy / TeV

[CERN Yellow Rep. Monogr. 7 (2019) 221]

How to decrease the theoretical uncertainty?

11



QCD @ LHC

In order to fully exploit the physics potential of LHC, QCD (and EW) must be
understood and modelled as best as possible: many aspects of precision

* Incoming protons are beams of partons:
parton distribution functions (PDFs)

e Primary hard scattering: fixed-order
perturbation theory, resummation

¢ Partonic evolution: parton showers
¢ Hadronization and heavy hadron decay

e Multiple parton interactions and underlying
event

[A Sherpa artist]

Diverse market of uncertainties, but higher orders are very important!

12



Higher-order corrections

13



QCD cross sections at the LHC

Hadronic cross sections can be computed as convolutions of parton distribution functions
(PDFs) with hard scattering partonic cross sections: collinear factorization theorem

doag = E /an/de faya(xa, ) o 8(Xb, ) X doap(Xas Xb, 1oF)
—_—
a,b

PDFs partonic x-sect

/\n
1+0 (X2
()

o foya(xa, uF), fo 5(xp, uF): non-perturbative PDFs, to be measured in experiment or
computed on the lattice

* doap(xa, Xp, F): hard partonic cross section, can be computed in perturbative QCD

e Collinear factorization is valid at high @ (recall Aqcp ~ 300 MeV), value of n is not
predicted (believed to be n = 2 for many cases)

» Factorization scale dependence (ufg): separation of long and short distance physics

14



The partonic cross section in perturbation theory

High-energy parton scattering can be described in QCD via perturbation theory.

e The hard partonic cross section computed as a power series of the strong coupling as

doap(1) = 0B (ng) (012 + as(ur)do g, 0e) + a3 () B0 (s ) + .. )
O(10%) O(1%)

The strong coupling

e The basis for the applicability of 03
perturbation theory in QCD is asymptotic
freedom: the strength of the interaction

T decay (N*LO) +-
low Q* cont. (N'LO) +o-

decreases with increasing energy. 0 EW prcision it (VLO) o+ ]

PP (top, NNLO)

* as(Mz) ~0.118 = roughly NLO ~ O(10%),
NNLO ~ O(1%), etc., but naive counting
can be off by an order of magnitude.

(@)
8

0.15 |

01

* Scale dependence (ug): due to truncation
of the perturbative series = indicates size of oos | " - -
missing higher orders. - Q(Gev]

M% [PDG Review of Particle Physics (2022)]

¢ Note: a/as ~ 0.1 but beware In (F)l

= a,(Mz%) = 0.1179 £ 0.0009
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Ingredients of a fixed-order calculation

Beyond leading order, we must account for extra radiation, both virtual as well as real.

'y N3LO, ¢ Virtual radiation: loops
9 —_ . . .
_IoT :ﬁ:ﬂ: * Real radiation: extra particles in the final
state. They can appear because the extra
Wy particles can be unresolved, which
( D conceptually is the same as being
NNLO, N3LO; . oo
reabsorbed in the process, like in loops.
i i i g i i” * Real issue is not the growing number of
w RV diagrams, but the presence of singularities.
\ & 7
{ 3\
NLO> NNLO3 N3LO,
virtual (V) L RV J RRV
{ N\
LO, NLO3 NNLO; N3LOs
Born real (R) RR RRR
\ & 7

Legs 16



Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an
n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

17



Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an
n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

Examples:

* 5 resolved partons, 0 unresolved partons

¢ all momenta “well-separated” and “hard” /
A//.\
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Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an
n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

Examples:

* 4 resolved partons, 1 unresolved parton

e one pair of momenta is collinear, p;||p: /
Pi pr
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Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an

n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

Examples:

* 4 resolved partons, 1 unresolved parton

* one momentum is soft, p, — 0 /
°
y
Pr

17



Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an
n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

Examples:
pi Pr
» 3 resolved partons, 2 unresolved partons i

* two pairs of momenta are collinear, p;||pr
and pj||ps

N

Pj ps
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Unresolved partons

We call a parton unresolved if its energy is much smaller than the typical energies of the
rest of the partons (soft limit) or if its momentum is nearly collinear with the momentum
of another parton (collinear limit).

Figuratively, if p partons are unresolved in an n+ p-parton event, then the n+ p-parton
momentum configuration is indistinguishable from the momentum configuration of an
n-parton event. In this case we speak of a p-fold unresolved configuration.

At LO, all partons are resolved (by definition), at NLO at most one parton can become
unresolved, at NNLO single and double unresolved configurations can occur.

Examples:
pi Pr
» 3 resolved partons, 2 unresolved partons i

* one pair of momenta is collinear, a third
momentum is soft p;||pr and ps — 0

17



Perturbation theory in practice

The application of perturbation theory in particle collisions raises two basic issues.

1.

We must evaluate the mathematical expressions corresponding to the diagrams
describing the process = multi-loop integrals

O (1T ) (M- 15 1)+

LO> NLO> NLO3 NNLO> NNLO3 NNLOy

The various contributions must be summed. Although the sum of contributions is
finite at each order, the separate contributions are naively infinite due to the
presence of IR singularities =~ IR pole treatment

LO, = finite
NLO, + NLO3 = finite BUT NL0273 = 00
NNLO> + NNLOs; + NNLOs = finite  BUT  NNLO 34 = 0o

Note: both issues understood at NLO for general processes = automation of solutions
lead to the NLO revolution of the 2010s.

18



Where do the infinities come from?

Recall that in order to obtain physical quantities, i.e., cross sections, we must perform
some momentum integrals:

* over loop momenta to obtain |M|? (loop integrals)
o= [ IMPd¢ , ,
» over real momenta to obtain o (phase space integrals)

It turns out that integrations over momenta of unobserved particles, either in loops or in
real radiation lead to divergent integrals!

Two distinct sources:

1. Divergences “at infinity"”, i.e., p — oo: UV divergences, removed by suitable
redefinitions of the parameters of the theory (renormalization); only in loops

2. Divergences “at zero”, i.e., p — 0 (zero energy) or pi1||p2 (zero angle): IR
divergences, cancel in properly defined physical quantities; in real radiation and
loops

Technically, UV divergences are (much) easier to handle: renormalization can be
performed once and for all at a given perturbative order. On the other hand, IR
divergences manifest in each new calculation even after UV renormalization has been

implemented.
19



Sources of IR singularities

The NNLO correction to a generic m-jet observable is the sum of three terms

o_aNbNLO — / dU;iR Imi2 + / (do’iv + daacbl) Imi1 +/ (dgggv + daiz) Im
m+2 m+1 m

Double real (RR) Real-virtual (RV) Double virtual (VV)

* One-loop squared MEs

e Tree level squared MEs
with m + 2-parton kine-
matics

MEs diverge as one or
two partons become un-
resolved

phase space integral di-
vergent (up to O(e*%)
poles from PS integra-
tion in dim. reg.)
no loops, so no explicit e
poles in dim. reg.

with m + 1-parton kine-
matics

MEs diverge as one par-
ton becomes unresolved

phase space integral di-
vergent (up to O(e?)
poles from PS integra-
tion in dim. reg.)

one loop, explicit
poles up to O(¢7?)
from loop integration in
dim. reg.

e Two-loop squared MEs

with m-parton kinemat-
ics

e jet function screens di-

vergences in MEs as par-
tons become unresolved
phase space integral is fi-
nite

two loops, explicit ¢
poles up to O(s7%)
from loop integration in
dim. reg.

20



Perturbation theory in practice — the problem

Clearly, the infinities that appear must be treated in a consistent way before any explicit
calculation can be performed.

How to perform computations in practice beyond NLO?

21



The basic idea of the subtraction method

One general approach to dealing with the infrared divergences that appear in higher-order
perturbative computations is the so-called subtraction method.

Idea
Using appropriately chosen subtraction terms, reshuffle divergences between each

contribution of the full higher-order correction in such a way that each contribution is
finite after the reshuffling!

22



The subtraction method in practice - a caricature

Suppose we want to evaluate (at ¢ — 0)
1 O'Q’LO(X,E) =x"17°R(x),
SNLo NLO
o= o3 7 (x,e)dx + 05" (€) where A
/0 UQILO(E)=T1+V0+V1€+~~,

with R(0) = Ry < oo, and V_; = Ry (such that o is finite).

* Define the counterterm
O'QILO’A(X, e) = x17°R,

¢ Use it to reshuffle singularities between the contributions

1
o :/ [aéVLO(X, ) — NLO A(X 5)} dx
0

1
+ | MO (&) +/ UQ’LO’A(x,s)dX]
e=0 0 e=0
1
R(x) — R V_ R
:/ {%}dx +{—1+V0+V15+..‘——0}
0 X =0 3 € le=0
1
R(x) — R
:/ de +V, recall V_; = Ry!
X
0

The two terms on the last line are both finite!
23



The CoLoRFulNNLO scheme

24



CoLoRFuINNLO

CoLoRFulNNLO: a local, analytic subtraction scheme for NNLO

¢ Exact perturbative result without slicing parameters
(reduced source of numerical uncertainty)

e Point-by-point subtraction in phase space including spin and color correlations
(no integrals that are finite in d dims., but undefined in 4 dims.)

¢ Analytic computation of integrated subtraction terms
(rigorously show cancellation of virtual poles)

» Explicit and general expressions
(coding, automation)

25



General subtraction procedure

Consider the N¥LO partonic cross section: total of k extra emissions

k

K
k
o © Z/ (dURk iy dUC') Imtk—1 = Z Ri—1V
=0 m+k—1 1—0

Ri—1Vy,

o daab

: the I-loop contribution with (k — /) extra real emissions

. da : the I-loop collinear remnant from PDF renormalization. E.g., (P is the
standard space-like splitting function)

as

0 0
doft = 2= (ch) ®dol + dol ® Pib))

At NNLO, we have

aaNbNLO:/ doRR +/ (dofyY +do, )+/(d0 +doy;)
m+2 m+1 m

=RV =Ry =Ry V2

s

The CoLoRFul scheme to regularize IR singularities proceeds in 3 steps
26



General subtraction procedure

Step 1: subtract all IR singularities from k-fold real emission

¢ Construct an approximation to Ry Vy valid when all k real emissions are unresolved.
Denote this as Ax[RxVo]. Then the difference

(1 = Ap)[Re Vo]

is free of singularities as k partons become unresolved.
* However, it is still singular as (k — 1) partons become unresolved, hence construct
Ay 1(1 — Ap)[RcVo]. Now the expression
(1= A—1)(1 = A)[Rc Vo]

is free of singularities as k or (k — 1) partons become unresolved.
e lterate the above procedure until all singularities are removed. The expression

k

(1 A1)(1— A2)(1 — A3) -+ (1= A[Re Vo] = [H(l - A)

i=1

[Ri Vo]

is free of all IR singularities.

27



General subtraction procedure

Step 2: integrate the subtractions over unresolved emissions and add back
e Specifically, all terms that involve taking a j-fold limit will involve integrations over j
unresolved emissions. These terms are precisely

j—1

(1—A1)(1— A2)(1 - A3) - (—Aj)[R Vo] = {H(l —A))

i=1

(—Aj)[Ri Vol

o After integration, they must be grouped with R,_;V;. After this rearrangement we
have

j—1

k k
Jé\rbkLO _ |:H(1—A/):| [RkVO]+Z Rk_j\/j—/|:H(l—A,‘)
j=1 J

i=1 i=1

(—A;)[Rk Vo]

* The first term is free of IR singularities, but the j-th term of the sum in the second
term still has singularities as up to j — k partons become unresolved.

28



General subtraction procedure

Step 3: iterate the first two steps until all IR singularities are removed
» The final result of this iteration can be written in a compact form

k k—1 !
L0 _ Z [Hu —A) Z {6U 1
1=0 i=1

=0

| wm) 1
+ Z H/ [ (1= Anp) | Ar(m)
nm=1

TeP(I—j) m=1

}[Rk—j 7]

e Here P(/ — j) denotes the set of ordered partitions of the integer (/ — ) and
m = {n(1),7(2),...,7(|7])} is a particular element of length || of this set.

29



General subtraction procedure

olO =RV = / doB Jm
NLO (k=1):

NLO (1 — Al)[Rl Vo] + RoV1 + /Al[Rl V0]
1

=/ [doB i1 — doly™ U] +/ [dab+da +/d R‘“} I,
J m+1 m 1

* On the second line we have introduced the notation
A
A1 [Rl Vo] = A1 [do’ame+1] = dO’R lJm

* Notice that A; also acts on the measurement function J.

e Infrared and collinear safety of the observable ensures that Ai[Jmi1] = Jm so the
integrated subtraction term can be combined with the virtual contribution.

30



General subtraction procedure

NNLO (k = 2):

oNNLO — (1 — A1)(1 — A2)[R2 Vo]

+ (1 - ARV + (1~ Al)/Al[RZVO]
1

/(I—Al)A2+/A1/A1
2 1 1

¢ Following the notation introduced above

+ RoVa +

[R2 Vo] + /Al[Rl Vil
1

3 R,A RR,A
a;\{’NLO :/ |:do'§zRJm+2—do' 1Jerl—dO'R 2 Jm +dcr 12, :|
m+2

A
RV ¢} RR,A RV, A 1,A1 RR,A
+/ {[dvab +daab1 +/dgab 1}1,,,“—{(10 1+d +(/do‘ab 1) :|Jm}
m+1 1

1

) A1
A% Cy RR,A, RR,App RV,A; C1,A1 RR,A;
+/{d(rab +do‘ab +/|:ddab —do‘ab + do‘ab +d(rab + do‘ab Im
m 2 1 1 1

31



General subtraction procedure

Role of individual terms

RR,A; RR
do,, doy 1
RR,A; RR
do,, dop 2
RR,A RR,A RR,A
dUb’l2 dcrb’z,dab'1 1,2
2 . a a partons are
regularizes as ved
unresolve
RV,Ay RV
do, do, 1
C1,A1 Cy
do_, do_, 1
( d RR,AI)AI d RR,A; 1
fl Tab fl Tab

32



The dual role of Ay

. RR,A
To define do, "2, we can set
RR,App _ RR,A, RR,App _ RR,A,
o doy, U = Ay [do,, ] o doy, U2 = A [do,, ]

Whichever option one chooses, the other becomes a constraint on the construction

33



The dual role of Ay

. RR,A
To define do, "2, we can set
RR,A RR,A RR,App _ RR,A
o doy, M2 = Ay [doy, ] o doy, R = A [doy, M
ab ab ab ab

Whichever option one chooses, the other becomes a constraint on the construction

RR ————————2 RR,A;
doab
RRA; | & s RR,A;,

33



The dual role of Aj»

. RR,A
To define do, "2, we can set
RR,A RR,A RR,App _ RR,A
o doy, M2 = Ay [doy, ] o doy, R = A [doy, M
ab ab ab ab

Whichever option one chooses, the other becomes a constraint on the construction

RR ————————2 RR, Ay :

RR,A RR,A
| —

« Internal cancellations within each piece to avoid multiple subtraction (see below).
RR,A;,
ab ) 33

Fine print:

. . . s RR,A .
* Spurious single unresolved singularities in do ;" regularized by do



Constructing the subtraction terms

In the CoLoRFul scheme, subtraction terms are built from IR factorization formulae

.o
as '\’ (i .
UMy (1P ) to0p = (;) > " sing x Mg (1BYm) B roop
i=0

j partons removed

I—loop (I—i)—loop i—loop

e U formal operator that takes some j-fold unresolved limit

. Singj(.i): universal (independent of M) IR singular structure for i-loop, j-fold
unresolved emission

o |M§B,m({ﬁ}m)‘flff)floop: (I — i)-loop reduced matrix element with j partons removed
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Known ingredients

Explicit forms of all Singj(i) relevant at NNLO are known.

* Tree-level three-parton splitting functions and double soft gg and gg currents

—= O € -~

[Campbell, Glover 1997; Catani, Grazzini 1998;
Del Duca, Frizzo, Maltoni 1999; Kosower 2002]

* One-loop two-parton splitting functions and soft gluon current

—05,. 0 O

[Bern, Dixon, Dunbar, Kosower 1994; Bern, Del Duca, Kilgore, Schmidt
1998-9; Kosower, Uwer 1999; Catani, Grazzini 2000; Kosower 2003]

Are we done? Just set A; = U;!

Unfortunately NO!
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From limits to subtraction terms

Issues

1. Unresolved regions in phase space overlap = care must be taken to avoid multiple
subtraction in overlapping regions

2. IR limit formulae are only well-defined in the strict limits = definitions must be
carefully extended over the full phase space away from the limits

3. Subtraction terms must be integrated over the momenta of unresolved radiation =

see Pooja Mukherjee's talk next week
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From limits to subtraction terms

1. Overlapping singularities can be addressed by the inclusion-exclusion principle:
subtract each limit once, add back pairwise overlaps, subtract triple overlaps and so

on. E.g., at NLO
A=) Cit ) 8- ) Cins

r {ir,r}
2. In order to obtain true subtraction terms, two additional steps are needed
* Make |./\/lm;’m({ﬁ}m)|%,_,,)_100p well-defined = specify precisely the momenta

entering the reduced matrix elements via momentum mappings that implement
momentum conservation and mass-shell conditions

{p}m+j — {ﬁ}mv j=12

* Make Singj(.i) well-defined = the various quantities entering the singular
structures such as momentum fractions, transverse momenta and eikonal
factors need to be precisely specified.

The adopted definitions must be such that they respect the structure of cancellations
in all overlapping limits, which is a constraint for the entire construction.
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From limits to subtraction terms

After these definitions are fixed, the IR limit formula can be promoted to a (sum of)
true subtraction term(s) that is unambiguously defined at any point in phase space,

!

"

UM i j (P ma) - 100p — Zu}, !
i=0

where .
i—i as\/ s— () .
L — (g) Sing; x [Myz (B} m)_i)too

o Sﬁﬁéj(-') represents the expression of the corresponding singular structure incorporating
the precise definitions of momentum fractions, eikonal factors and so on.

e The matrix element is evaluated over the set of mapped momenta, {p},,.
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CoLoRFuIlNNLO for color-singlet production: Aj;

For color-singlet production in hadron-hadron collisions, hy + hg — X, we have
RR,A 0
do,, t= d¢x+2({P}x+2)A§ )

where

A = Z[s(oo +Z(2 CFFO0) _ C{—;FSEQO))_’_Z(CIF(OO) CIFS(OO))}

reF i€F cel
i#r
* [ and F denote the sets of initial-state and final-state partons
e The various subtraction terms correspond to the limit implied by the notation

* The (0,0) superscript signals that these terms originate from IR limit formulae that
involve tree-level singular structures multiplying tree-level reduced matrix elements

e Each term is explicitly defined and can be evaluated in any point of the double real
emission phase space
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CoLoRFulNNLO for color-singlet production: Ap

For color-singlet production in hadron-hadron collisions, hy + hg — X, we have

RR,A, _

do, "2 = d¢x+2({P}x+2)A§0)

where

IFFOO (0,0) IFIFOO 0,0
= oS0 3 e et 4 37 (el ksl ||

reF scF cel del
s#r d#c

e Again, various counterterms correspond to the limit implied by the notation

* Notice no triple collinear-double collinear overlap: general feature at NNLO

* Notice no soft-collinear terms: these cancel for color-singlet production due to the
precise definitions we adopt

e Each term is explicitly defined and can be evaluated in any point of the double real
emission phase space
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CoLoRFuIlNNLO for color-singlet production: Aj»

BRAL = dgxio({p) xy0)AY where

A= [ 'S, + Z ( O chF — AD C,’:FSS> +3 (Ag°> clE — AP cgssﬂ
r#s

For color-singlet production, we have do_,

seF cel

with

A8, =3 [ 's,+>0 ( CIFFO.0) 5 CIFF 5(00) ss)}

riF cel
AW CFF — SO0 cFF 4 Z ( CIFF0.0) oFF _ oIFF 5(00 CFF)
cel
AP CFFs, = Zci’ff 00 pFF g
cel
APl =37 (el + Y e er)
reF del
r#s d#c
AP CEs, = Y (S89 clrs, 4 cEFOD s, - SO ek,
refF
r#s
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Full set of double real subtraction terms

Representative example: gg — Hgg as double real for gg — H

RR RR,A RR,A RR,A
/ |:d0'ab Imia—do ;i —dal, T 2 U do ) 121,,,}
m+2

Counter Master
Types Terms .
events integrals
AP 5 13 7 11
A 5(11) 9(29) 5 42
A 13(23) 39(81) 17 104
Total 23(39) 61(123) 29 157

* Numbers shown with(without) accounting for cancellation of soft-collinear type
terms
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Full set of real-virtual subtraction terms

Representative example: gg — Hg as real-virtual for gg — H

A
RV Cq RR,A RV, A1 C1, M RR,Ap
/ {|:daab +do‘ab +/do’ab Im1— dUab +do‘ab + do‘ab Im
m+1

1 1

Counter Master
Types Terms .
events integrals
A 2 3 2 24
Al 3 6 2 10
Al 5 13 2 65
Total 10 22 2 99

e In the real-virtual contribution only single unresolved real radiation = construction of
subtraction terms is only “NLO complexity” (integrals are NNLO complexity though)
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Explicit structure of cancellations in RR

Delicate structure of cancellations between matrix element and subtraction terms

° gg — Hgg
1 4
---3
2 5

* Interplay of terms

H—@?



Explicit structure of cancellations in RR

Delicate structure of cancellations between matrix element and subtraction terms

° gg — Hgg
1 4
---3
2 5

Cig limit
* Interplay of terms

D—@?

AR
(@O—
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Explicit structure of cancellations in RR

Delicate structure of cancellations between matrix elem btraction terms

° gg — Hgg
1 4
---3
2 5

Sus limit
* Interplay of terms

O—@?
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The NNLOCAL code
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The NNLOCAL code

[ ~/research/colorsinglet/runs_for_nnlocalgg/nnlocal/bin/testrun-H
[k > ../nnlocal
khhkkhhkhkkhhkhhkkhhhhkhhhkhhkhdhk yarsion beta *rkkkkkhkhkhhhkkhkhhkhhrhhhk

* *
* ## ## ## ## ## #AAHAE A #H# ## S
* A ## ## ## O w
* . #E A A ## ## ## #H “
* A AR A AR A ## ## ## ## ## ## “
* ##E AR A A A ## ## ## Liaaaaaa e &
* A ## ## ## ## ## ## ## &
* ## ## e S s A #H# HHHAAHHH *
* *

Hkkkkkkkkkkkkkkkkkkkkkx December 20th, 2024 ***kkkkkkkkkwkkdkkkbkhkkk

Authors:

Vittorio Del Duca <Vittorio.Del.Duca@cern.ch>

Claude Duhr <cduhr@uni-bonn.de>

Levente Fekeshazy <levente.fekeshazy@desy.de>

Flavio Guadagni <guadagni.flavio@gmail.com>

Pooja Mukherjee <pooja.mukherjee@desy.de>

Gabor Somogyi <somogyi.gabor@wigner.hun-ren.hu>

Sam Van Thurenhout <sam.van.thurenhout@wigner.hun-ren.hu>
Francesco Tramontano <francesco.tramontano@unina.it>

E N N R
* Ok Ok Ok K Ok Ok ok Kk k ok F *

https://github.com/nnlocal/nnlocal.git

hhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhk

* Using input file named input.DAT
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The NNLOCAL code

NNLOCAL: a proof-of-concept Monte Carlo program implementing the described scheme

* Architecture based on MCFM-4.0 (note current version is 10.3) written in
Fortran77. (Have ensured that this is tolerated by the authors!)

e Publicly available, only external dependency is LHAPDF.

https://github.com/nnlocal/nnlocal.git
Proof-of-concept code:

* Gluon fusion Higgs production in HEFT (m; — oo) with no light quarks (nf = 0):
not a restriction on the structure of the subtraction scheme, on the contrary, all
possible IR singularities for color-singlet production are present.

e Minimal optimisation only (especially in VV part): some issues with numerical
cancellations in integrated subtraction terms handled by dynamical switching to
quadruple precision.

e Many features to support checking/validation.
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https://github.com/nnlocal/nnlocal.git

The NNLOCAL code

Main features

e Publicly available local analytic subtraction code at NNLO.

¢ Computation of any infrared and collinear-safe observables via user defined analysis
routine.

* Support for parallel running if desired (managed by shell scripts).

» Support for efficient building and monitoring of Monte Carlo integration grids (via
parallel running and scripts for visualisation).

e Support for checking cancellation of kinematical singularities through dedicated
phase space routines.

» Support for checking cancellation of e-poles order by order.
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Code validation

Validate cancellation of kinematical singularities in double real emission (R =" A/|M|?)

100 - 100
107! 107
102 102
10° x X 10°
T g % 0
10° 10°
108 106
107 107

o®
107 108 105 10* 103

109 TV S I
107 10% 105 10 109 102 107 10°

Cuas

102 107 10° 107 10% 105 10* 10% 102 107 10°
Yaa (Yaa#+ysa)2 Yias
Check cancellation of e-poles

na = 0.755605220795
nb = 0.458650112152

1/eps~4 1/eps”3 1/eps”2 1/eps eps”0
ICT f(xa/na)*f(xb/nb) 0. 0. =0. i1 ~-0.000000001763 5835.169801514889
ICT f(xa/na)*f(xb) 0. =-0. 0. -0.000000000002 -3532.639553984512
ICT f£(xa)*f(xb/nb) 0. 0. 0. -0.000000000001 -4741.126731759623
ICT f(xa)*f(xb) -18. -90. 162.250675918787 440.936804453876 3724.953259726909
VV/B f(xa)*f(xb) 18. 90. -162.250675918791 ~-440.936804453905 1358.713586569218
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Code validation

Tuned comparison of inclusive cross section to n31oxs [Baglio, Duhr, Mistlberger, Szafron 2022]
(modified to exclude quark channels and use same as running as NNLOCAL)

my [GeV] n3loxs (gg) NNLOCAL (gg)
100 65.72 pb 65.74(4) pb
125 42.94 pb 42.94(2) pb
250 9.730 pb 9.733(5) pb
500 1.626 pb 1.626(1) pb
1000 173.7 fb 173.7(1) fb
2000 8.794 fb 8.790(5) fb

¢ Several choices of ugr, ur checked, shown values are for pugr = pr = my.

* Runtime per mass value: ~ 20 mins. on a MacBook Pro M2 with 8 CPUs.
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Differential result

Rapidity distribution of a Higgs boson of mass my = 125 GeV at the 13 TeV LHC

r . i
10° £ LHC 13 TeV  Total —— ]
my= 1259Gev NNLO contribution +———

HEFT, n;=0

iy
2

I
=
o
]
bl

Total

IIII" NNLO contibution Nm"ll 1

» Error shown is estimated Monte Carlo integration uncertainty.

¢ Runtime ~ 1 hr 15 mins. on a MacBook Pro M2 with 8 CPUs.
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Conclusions and outlook
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Conclusions and outlook

Precision is key

e Understand subtle features of the Standard Model.
e First signs of New Physics might very well be indirect.

e Exact higher-order calculations required beyond NLO.
CoLoRFuINNLO at work for cancelling initial state singularities

» Completely local subtraction terms.

e Fully analytic integrated subtraction terms.
Implemented in NNLOCAL

* Gluon fusion Higgs production in HEFT has very simple matrix elements but
otherwise all essential features.

* Quark channels, full mass dependence will be available in the near future.
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Conclusions and outlook

Outlook

e NNLOCAL: from proof-of-concept to useful tool.
(all channels, more color-singlet processes, optimisation)

e The inclusion of final-state jets and heavy quarks in hadron collisions appears
feasible in our methodology.

» Extension to next order (N3LO) for color-singlet appears conceivable.
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Conclusions and outlook

Outlook

e NNLOCAL: from proof-of-concept to useful tool.
(all channels, more color-singlet processes, optimisation)

e The inclusion of final-state jets and heavy quarks in hadron collisions appears
feasible in our methodology.

» Extension to next order (N3LO) for color-singlet appears conceivable.

Thank you for your attention!
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