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Quick  recap 

✦ Precision is importnt.

✦ Hndling the singulrities is well understood nd extensively implemented 
at NLO to high precision.

✦ But it’s rel challenge to do the sme t NNLO.

✦ Hurdles t higher order corrections re the singularities.

✦ The chllenges re overcome nd utomted in CoLoRFulNNLO subtraction 
scheme.
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Generic procedure in a nutshell 

subtrct IR singulrities for - fold 
emission 

k

integrte the subtrction over unresolved 
emission nd dd bck 

iterte the first two steps until ll 
singulrities re gone 

well-defined counterterms 

explicit integrtion 

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6: NNLOCAL
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Formula at NNLO 

✦ The arrangement of counterterms to hndle the singulrities is done in the 
following wy :

๏  regularizes the doubly-unresolved limits of . 

๏  regularizes the singly-unresolved limits of . 

๏  accounts for the overlap of   and  . 

๏  regularizes the singly-unresolved limits of . 

๏  regularizes the singly-unresolved limits of 

dσRR,A2
m+2 dσRRm+2

dσRR,A1
m+2 dσRRm+2

dσRR,A12
m+2 dσRR,A1

m+2 dσRR,A2
m+2

dσRV,A1
m+1 dσRVm+1

( ∫
1
dσRR,A1

m+2 )A1 ∫1
dσRR,A1

m+2 .
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This talk …

✦ In this tlk : generic overview of the steps needed in   integration 
procedure.

dσRR,A2
m+2

✦   involves counterterms when two prtons become unresolved :dσRR,A2
m+2

๏Triple collinear: three moment become prllel, pi ∥ pr ∥ ps

๏Double collinear: two momentum pirs  become prllel, pi ∥ pr, pj ∥ ps

๏So collinear: one momentum pir becomes prllel, nd  third 

becomes soft 

pi ∥ pr ,
ps → 0

๏Double So: two moment become soft ps → 0, pr → 0

✦ Minly discuss bout the double collinear subtraction term denoted by the 

opertor Cir;js

5



Preface to the computation 

✦ Reverse unitarity:  very well known concept. For  generic mssless externl 
momentum ,  we cn write the on-shell condition s the difference of two 
propgtors with opposite prescription for their imginry prt, thereby:

q

δ+(q2) → ( 1
q2 )c

✦ Topology: is  fmily of Feynmn integrls chrcterized by the sme set of 
propgtors. A generic Feynmn integrl of  given topology cn be expressed 
s:

I(n1, ⋯, nN) = ∫ ddk1⋯ddkl f(k1, ⋯, kl, p1, ⋯, pg)

f(k1, ⋯, kl, p1, ⋯, pg) =
1

Dn1
1 ⋯DnN

N

[Anastasiou, Melnikov ,‘02]

 = cut propgtorsc
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Canonical form: 

✦ IBP reduction : to express  Feynmn integrls nd their derivtives 
s  liner combintion of  ones clled mster integrls (MIs) . The 
reltion stems from the eqution.

"complicated"
"simple"

0 = ∫ dDk1⋯dDkL
∂

∂kμ
i

Nμ

D1⋯DN

✦ -form of the differential equation : the MIs obtined fter reduction re put 
into  differentil form using differentil opertors which reds s 
ϵ

d ⃗f(ϵ, {xj}) = (
N

∑
i=1

Ai(ϵ, {xj}) dxi) ⃗f(ϵ, {xj})

where  re  -mtrices of rtionl functions in  nd .Ai Nmaster × Nmaster {xj} ϵ

[Chetyrkin, Tkachov ,‘81]
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๏ Transforming the bsis of MIs with n invertible trnsformtion ,T

๏ the only singulrities of the differentil re simple poles and the only 
dependence on  is given by the explicit prefactor.ϵ

⃗f = T(ϵ, {xj}) ⃗f ′ 

sets up the differentil eqution in canonical form: 

d ⃗f ′ (ϵ, {xj}) = ϵ(
N

∑
i=1

A′ i({xj}) dxi) ⃗f ′ (ϵ, {xj})

[Henn ,‘13]

Canonical form: 

๏ The lgorithm for finding  rational transformation of  differentil eqution into 
-form is utomted in severl pckges.ϵ

[Meyer,´17]
๏ We use the Canonica pckge in Mthemtic for this purpose.
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๏ And the solution to the set of such differentil eqution is given s :

⃗f ′ = ℙ exp[ϵ∫ A′ ( ⃗x)] ⃗f ′ 0

๏ where,  gives the general solutions nd   is the boundry 

vector determined from initial conditions.

ℙ exp[ϵ∫ A′ ( ⃗x)] ⃗f ′ 0

Iterated integrals : 

๏ The cnonicl form llows the bove pth ordered exponentil to be 
written in terms of iterated integrals.

๏ This enbles  systemtic study of the function space of the differentil 
eqution's generl solution.
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Function  space of the result 

✦ Hence the  finl gol is to obtin n expression of the generl solution in terms of :

๏ Transcendental numbers:  

๏ Transcendental functions :  whole zoo ws discovered 

ζ2, log 2,⋯

‣ Clssicl polylogrithms  

‣ Hrmonic polylogrithms 

‣ 2d hrmonic polylogrithms  

‣ Cyclotomic hrmonic polylogrithms  

‣ All these re just specil clsses of multiple polylogrithms  

‣ Elliptic polylogrithms 

✦ In this tlk : will concentrte exclusively on multiple polylogarithms .

✦ Even if  result  is simple , it might be tht our pproch to the problem leds to  
complicated answer : 
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Polylogarithms

✦ Recursive definition of multiple polylogarithms (MPLs),

G(a1, ⋯, an; z) = ∫
z

0

dt
t − a1

G(a2, ⋯, an; t), Lin(z) = ∫
z

0

dt
t
Lin−1(t)

✦ All the other polylogrithms re just special cases of MPLs,

๏ Clssicl polylogrithms :   

๏ Hrmonic polylogrithms :   

๏ 2d hrmonic polylogrithms : e.g.,  

๏ Cyclotomic hrmonic polylogrithms : roots of unity

Lin(z) = − G(0,⋯,0,1,z)
ai ∈ {−1,0,1}

ai ∈ {0,1,a}

✦ The polylogrithms stisfy vrious complicted functional equations nd 
the simplicity of the answer might be hidden behind it.

✦ Nturl  ttched to MPLs: weight = number of  integrations"invariants"
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Hopf algebra of MPLs 

✦ Algebra : vector spce with n opertion tht llows one to   two 
elements into one (multiplication) 

"fuse"

✦ Coalgebra : Vector spce with n opertion tht llows one to  
elements prt (comultiplication)

"break into"

✦ Hopf algebra : Vector spce with both multiplication and comultiplication, i.e., 
one cn  nd   in  consistent mnner."fuse" "break into"

 liner mp μ : 𝒜 ⊗ 𝒜 → 𝒜

 liner mp Δ : 𝒜 → 𝒜 ⊗ 𝒜

or in other words,  liner mp , multipliction :  (a, b) → ab

Δ(a) = a ⊗ 1 + 1 ⊗ a, a ∈ 𝒜, its coproduct Δ(a) ∈ 𝒜 ⊗ 𝒜
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Preface to the computation 

✦ Multiple polylogrithms form  Hopf algebra: 

 Δ(ln z) = 1 ⊗ ln z + ln z ⊗ 1

Δ(Li2(z)) = 1 ⊗ Li2(z) + Li2(z) ⊗ 1 − log(1 − z) ⊗ log(z)

[Goncharov,´05]

✦ Symbols : mximl itertion of the coproduct (modulo ), iπ

S(F) ≡ Δ1,…,1(F) mod iπ

S(Li2(z)) = − log(1 − z) ⊗ log(z)

✦ Since symbols re only in terms of logarithms conventionlly the log-signs 
re dropped nd written s : 

S(Lin(z)) = − (1 − z) ⊗ z ⊗ … ⊗ z
n−1
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Preface to the computation 

✦ How re ll these importnt?

✦ Imgine  two-loop multi-scle integrl tht evlutes to 1000´s of ´sLi4

ˋ ´Li4

ˋ ´Li3 ⊗ Li1
ˋ ´Li2 ⊗ Li2

ˋ ´Li1 ⊗ Li3

ˋ ´Li2 ⊗ Li1 ⊗ Li1 ˋ ´Li1 ⊗ Li2 ⊗ Li1
ˋ ´Li1 ⊗ Li1 ⊗ Li2

ˋ ´Li1 ⊗ Li1 ⊗ Li1 ⊗ Li1Li1 = − log(1 − z)

Too complicated to handle 

Still too  
complicated

Break it into pieces

Symbols
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Preface to the computation 

✦ At the end of this procedure , we hve broken everything into little pieces 

( symbol), for which all identities are known.

✦ We then need to reassemble the pieces to find the simplified expression.

✦ Recll tht the weight = number of  integrations

✦ Exmples: 

๏  weight 1 

๏  weight 2 

๏  weight  

๏  weight 1,  weight 2,  weight , 

๏ Rtionl numbers  weight 0.

log x →
log x . log y →

Lin(x), G(a1, …, an; x) → n

iπ = log(−1) →
π2

6
= Li2(1) → ζn = Lin(1) → n

→
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Sector decomposition 

✦ Sector decomposition : corresponds to  resolution of singulrities by  
sequence of blow-ups. For instnce, 

I = ∫
1

0
dx∫

1

0
dy x−1−ϵ y−ϵ(x + y)−1

✦ The integrl hs overlapping singularity for  nd  . But if we divide the 
integration region in two sectors then we get, 

x → 0 y → 0

I = ∫
1

0
dx∫

1

0
dt x−1−2ϵ t−1+ϵ(1 + t)−1 + ∫

1

0
dy∫

1

0
dt y−1−2ϵ tϵ(1 + t)−1

✦ In prctice,  single step of SD is not sufficient. We need to iterate this procedure.

[Heinrich ,‘08]
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Preface to the computation 

✦ subtractions of the poles in  : expnd the singulr fctors into distribution ϵ

✦ At the end of the itertion : All singularities factorized .

∫
1

0
dxx−1−ϵf(x) → ∫

1

0
dxx−1−ϵ[f(x) − f(0)] + ∫

1

0
dxx−1−ϵf(0) .

✦ After this : Integrl cn be evluted numerically for checks for ech 
coefficient of ϵ

✦ This is equivlent to pplying plus prescriptions .
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✦ Here the collinear factorization for finl prtons  nd  colliner to initil prtons 
 nd 

r s
a b

Integration of double collinear subtraction term

Uj |Mab,m+j({p}m+j) |2
l−loop ∝

l

∑
i=0

Sing(i)
j × |M ̂ab̂,m({ ̂p}m) |2

(l−i)−loop

j partons removed

✦ From previous tlk we know tht there is  factorization of the singularities in the 
colliner/ soft limit :

๏  is the - dimensionl Altrelli–Prisi splitting function 

๏  is the reduced mtrix element.

̂P(0)
fi fj

d

M(0)
m (pir, pjs, ⋯, pa, pb)

Cir;js |M(0)
m+2(pi, pr, pj, ps, …, pa, pb) |2 ∝ ⟨M(0)

m (pir, pjs, …, pa, pb) | ̂P(0)
fi fr

(zi, zr, k⊥, ϵ)

̂P(0)
fj fs

(zj, zs, k⊥, ϵ) |M(0)
m (pir, pjs, …, pa, pb)⟩
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Integration of double collinear subtraction term

✦ The momentum mapping for well defined  nd reduced mtrix elements Sing(i)
j

̂pμ
a = ξa,rspμ

a ,

̂pμ
b = ξb,rspμ

b ,
̂pμ
m = Λ(P, ̂P)μ

ν pμ
m , m ≠ r, s

๏  is  proper Lorentz transformation tht tkes the mssive 

momentum  into  momentum of the sme mss . 

๏ the fct tht  fixes the product of  nd  . 

๏ nd the vlues of  nd  re chosen s: 

Λ(P, ̂P)
P ̂P
P2 = ̂P2 ξa,rs ξb,rs

ξa,rs ξb,rs

sj(ab) = 2pj . (pa + pb)

s(ij)(ab) = 2(pi + pj) . (pa + pb)

[Gehrmann et.al.  ,‘07]

19



∫2
dϕrs(pr, ps, x1, x2)

x1x2

xa,rsarxb,ssbs

1
T2

arT2
bs

̂P(0)
̂afr
(xa,r, k⊥r, ϵ) ̂P(0)

b̂fs
(xb,s, k⊥s, ϵ)Fifif(xa,r, xb,s, ξa,rs, ξb,rs) .

✦ Now fter ll the re-definition we wnt to compute the following integrl for 
double collinear counterterm :

✦ Mking use of reverse unitarity we define the cut propagators :

D1 = p2
r , D2 = p2

s , D3 = (pa + pb − pr − ps)2 − x1x2sab, D4 = x2(sab − sbs − sbr) − x1(sab − sas − sar)

✦ Then the integrl mesure becomes :

dϕrs = ddprddps
1

D1D2D3D4

Integration of double collinear subtraction term

๏ xa,r = 1 −
sr(ab)

sab
, xb,s = 1 −

ss(ab)

sab
, ๏ Fifif(xa,r, xb,s, ξa,rs, ξb,rs) =

(sab − sr(ab))(sab − ss(ab))
sab(sab − s(rs)(ab) + srs)
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∫2
dϕrs( 1

xa,r
+

1
1 + xa,r )( 1

xb,s
+

1
1 + xb,s ) sab(x1(sab − sar − sas) + x2(sab − sbr − sbs))

xa,rxb,ssarsbs

✦ After some simplifiction this is wht the finl form looks like :

× (sab − sar − sas)(sab − sbr − sbs)
x1x2s2

ab

Finding the topologies

✦ Now we wnt to define some topologies tht include the bove integrls 
nd reduce them to MIs. 

✦ A topology with two externl moment  nd two loop moment 

 hs to contin 7 independent propagators. 

(pa, pb)
(pr, ps)
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Finding the master integrals

✦ Using partial fraction decomposition, ll integrls were mpped into specific 
topologies, ensuring ech topology includes ,   ,  nd  s cut 
propgtors, while the remining three propgtors were defined to mintin 
independence.

D1 D2 D3 D4

✦ The Double Soft counterterm ws decomposed into 3 topologies, Colliner Soft 
into 3 topologies, Double Colliner into 6 topologies, nd Triple Colliner into 
17 topologies.

✦ These topologies were then tken for IBP reductions in Kira, yielding 15 MIs for 
Double Soft, 14 for Colliner Soft, 24 for Double Colliner, nd 28 for Triple 
Colliner.

[Maierhoefer et. al.,´17]
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✦ MIs were evluted vi Differential Equations in -factorized form.ϵ

✦ For Double Soft nd Colliner Soft, the Canonica package successfully obtined 
the -fctorized form.ϵ

✦ For Triple Colliner nd Double Colliner, cnoniztion hd to be 
performed block by block .

Finding the canonical  form 

✦ Sub-sectors not requiring non-rational transformations were directly cnonized 
using Canonica.

✦ For the remining sub-sectors,  two-step bsis trnsformtion ws pplied: 

First, trnsformed to  new basis ensuring only  nd  dependency. 

Then, nother chnge of bsis ws performed to integrate out  

dependency.

ϵ ϵ0

ϵ0
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✦ Let’s tke one of the topologies  of double colliner nd brek down the 
method of canonization procedure.

(G1)

Canonization of  topologyG1

✦ The system of differentil equtions w.r.t the vribles  is:x1 and x2

∂x1
⃗f(x1, x2, ϵ) = A(1)(x1, x2, ϵ) ⃗f(x1, x2, ϵ)

∂x1
⃗f(x1, x2, ϵ) = A(2)(x1, x2, ϵ) ⃗f(x1, x2, ϵ)

๏ where  nd  re  matrices whose coefficients depend in 

rtionl wy on  . 

๏ the first  sub-block does not require non- rational transformation. 

๏ hence this prt  ws done using Canonica.

A(1) A(2) 11 × 11

x1, x2 and ϵ
7 × 7

Topology G1 : D5 = sar, D6 = sab − sas − sbs, D7 = sbs .
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✦ Then the chnge of bsis leds to the following new mtrices which look like 
this :

Canonization of  topologyG1

๏  denotes  non-zero element proportional to . 

๏  denotes  non-zero element proportional to polynomial in .

e ϵ
* ϵ
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✦ At first we proceed with the all the under diagonal terms for rows from 8 to 11. 

Canonization of  topologyG1

✦ The  dependence of these coefficients re in the form : ϵ

ϵ( − 4 + 32ϵ − 95ϵ2 + 130ϵ3 − 81ϵ4 + 18ϵ5) ≡ ϵα(ϵ)

✦ Now to get rid of this polynomil we mke  change of basis : 

 ⃗f ′ → Tα(ϵ)
⃗f ′ 

Ãxi
→ T−1

α(ϵ)Axi
Tα(ϵ)

with,

✦ with this trnsformtion ll the diagonal sub-blocks are proportional to .ϵ and ϵ0
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Canonization of  topologyG1

✦ Non-rational transformation of the bsis re needed for rows from 8 to 11. 

✦ The  dependency for the sub-blocks 8 to 10 reds s : ϵ

∂x1
⃗f ′ (x1, x2, ϵ) = Ãx1

(x1, x2, ϵ) ⃗f ′ (x1, x2, ϵ)

∂x2
⃗f ′ (x1, x2, ϵ) = Ãx2

(x1, x2, ϵ) ⃗f ′ (x1, x2, ϵ)

๏  denotes  non-zero element 
proportionl to .
e

ϵ
๏  denotes  non-zero element 

proportionl to  nd .
*

ϵ ϵ0
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Canonization of  topologyG1

✦ At first we begin with sub- block from 8 to 10 where the differentil eqution  
reds s : e.g. for 8th mster integrl :

∂xi
f8 = ϵ(

8

∑
j=1

Ãxi,8,j fj) + Bxi,8,8 f8, i ∈ {1,2}

✦ So in order to get the bove eqution proportionl to  we hve to mke  
chnge of bsis :  where 

ϵ
f8 = t8(x1, x2)g8

∂xi
t8(x1, x2) = Bxi,8,8 t8(x1, x2), i ∈ {1,2}

✦ Now for the 11 th sub-block , the differentil eqution reds s: 

∂xi
f11 = ϵ(

10

∑
j=1

Ãxi,11,j fj) + Bxi,11,11 f11 + Bxi,11,8 f8, i ∈ {1,2}

✦ As before we cn integrate out   term vi  chnge of bsis :  Bxi,11,11 f11 = t11(x1, x2)g11
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Canonization of  topologyG1

✦ And to remove  we mke  shi transformation:Bxi,11,8

f11(x1, x2, ϵ) → f11(x1, x2, ϵ) + G8(x1, x2)f8(x1, x2, ϵ) .

✦ then the differentil eqution reds s:

∂
∂xi

( f11 − G8 f8) = ϵÃ(i)
xi,11,11( f11 − G8 f8) + ϵ

10

∑
j=1

Ã(i)
xi,11,j fj + B(i)

xi,11,8 f8

✦ Implying the constraint: 

∂G8(x1, x2)
∂xi

+ B(i)
11,8(x1, x2) = 0

✦ With this the canonical form is reched : 

d ⃗f = ϵ(
11

∑
i=1

Ci d log Li) ⃗f
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✦ the generl solution ws obtined in terms of MPLs up to weight 3

✦ For boundary constant the  phase space integrals are then solved as : 

• choose explicit parametrization of phase space. 

•  write the parametric integral representation in chosen variables. 

•  resolve the  poles by sector decomposition. 

•  pole coefficients are finite parametric integrals. 

•  evaluate the parametric integrals in terms of MPLs.

ϵ

Finding the boundary   constants

✦ Detils on direct integrtion method : Sam Van Thurenhout s  talk in the future .'

✦  is   -mtrix, whose entries re algebraic numbers.Ci 11 × 11
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Simplifying the solutions

✦ Simplification is crried out in two steps : 

Step 1:  the  MPLs were reduced to  function which is  liner combintion of 
(products of) classical polylogarithms :

G(a, b; c) = ∑
i

ci Li2( fi(a, b, c)) + ∑
j,k

cjk log(gj(a, b, c)) log(hk(a, b, c))

✦  re rational numbers nd  re rational functions.  

✦ The rguments of these functions lie within the unit circle such tht no 

brnch cuts singulrities re  crossed.

ci, cjk fi, gj, hk

Step 2:  find n independent set of  by exploiting the reltions mong 
clssicl polylogrithms of different rguments.

Li2
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An example of simplification :

✦ Let’s simplify   in terms of dilogarithms and logs : G(−1,1; x)

✦  The symbol of   : G(−1,1; x)

S(G(−1,1; x)) = (1 + x) ⊗ 2 + (1 − x) ⊗ (1 − x) − (1 − x) ⊗ 2

G(−1,1; x) = ∑
i

ci Li2( fi(x)) + ∑
j,k

cjk log(gj(x)) log(hk(x))

✦  Mke n ansatz  for   : G(−1,1; x)

✦  Now the coefficients cn be determined by projecting the symmetric and 
anti-symmetric part of the symbol.
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An example of simplification :

✦  Nottions for decomposition of symmetric nd nti-symmetric prt :.

a ⊙ b ≡ a ⊗ b + b ⊗ a, a ∧ b ≡ a ⊗ b − b ⊗ a,

such tht, a ⊗ b =
1
2

a ⊙ b +
1
2

a ∧ b .

✦  Then the anti-symmetric prt of the   simplifies to : S(G(−1,1; x))

(1 −
1 + x

2 ) ∧
1 + x

2
= − S(Li2( 1 + x

2 )) .

✦  nd since the product of logarithms is totally  symmetric , the coefficient of the 
product of logrithms cn be determined s : 

S(G(−1,1; x) + Li2( 1 + x
2 )) = 2 ⊙ (1 + x) −

1
2

(2 ⊙ 2)

= S(log 2 log(1 + x) −
1
2

log2 2)
33



An example of simplification :

✦  We hve to lso ccount for weight 2 constants independent of . This cn 
be done by tking some limit. 

x

{G(−1,1; x) − [− Li2( 1 + x
2 ) + log 2 log(1 + x) −

1
2

log2 2]} x=0
=

π2

12

✦  Thus we obtin, 

G(−1,1; x) = − Li2( 1 + x
2 ) + log 2 log(1 + x) −

1
2

log2 2 +
π2

12
.

✦ Computtion of symbols nd projector opertors is implemented in 
PolyLogTools package.

[Duhr,´19]
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Conclusion 

✦ With this we hve extended the CoLoRFulNNLO scheme to hadron- hadron 
collisions.

✦ Following ll these methods nd tools , fully analytical integrted counterterms 
re now vilble.

✦ All the results re implemented in locl subtrction code : NNLOCAL

https://github.com/nnlocal/nnlocal

✦ So fr only the gluon channel in gluon  fusion Higgs production in HEFT 
( ) with no light qurks (  ) is implemented.Mt → ∞ nf → 0

✦ The inclusion of ll qurk chnnels nd optimistion of the code is currently 
underway.
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Thank you !
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