The continued story of NNLOCAL:

Integrating the subtraction terms
arxiv:2412.21028[ hep-ph]

Pooja Mukherjee

Universitat Hamburg, Hamburg.

In collaboration with V. Del Duca, C. Duhr, L. Fekeshazy, F. Guadagni,
G. Somogyi, F. Tramontano and S. Van Thurenhout

HUN-REN Wigner RCP theory seminar, February 14, 2025.

UH

j'h‘. Universitat Hamburg HLEJN @Ener 1

DER FORSCHUNG | DER LEHRE | DER BILDUNG




Quick recap

4+ Precision is important.

4+ Hurdles at higher order corrections are the singularities.

4+ Handling the singularities is well understood and extensively implemented
at NLO to high precision.

4+ But it’s real challenge to do the same at NNLO.

4+ The challenges are overcome and automated in CoLoRFulNNLO subtraction
scheme.




Generic procedure in a nutshell

Step 6:

Step 5:

Step 4:

Step 3:

Step 2:

Step 1:

NNLOCAL
u

explicit integration

well-defined counterterms

iterate the first two steps until all
singularities are gone

integrate the subtraction over unresolved
emission and add back

subtract IR singularities for k- fold
emission




Formula atNNLO

4+ The arrangement of counterterms to handle the singularities is done in the
following way :

NNLO RR RR,A RR,A RR A
T .1 = / |:daab Imyz—do_ " py—do 2 Uyt do, <y }
m-+2

Aq
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VvV _‘2 I, A9 .  » s 12 V , £ 1 “1, 41 AL, A

- {daab —+—daab — |:daab daab :| - |:daab —+—daab :| + ( daab ) }Jm
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RR RR

®do, 5 42 regularizes the doubly-unresolved limits of do 4D

o do RR Al regularizes the singly-unresolved limits of do sz

RR,A,

RR,A,
m+2 .

and do 4

e do RR A12 accounts for the overlap of do

o do RVAI regularizes the singly-unresolved limits of do RY -

< J do RR A1>A1 regularizes the singly-unresolved limits of J ddnfjfz’Al :
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This talk ...

4+ In this talk : generic overview of the steps needed in danl}Jl}iA2

procedure.

integration

+ dO'RR’A2

140 ~ involves counterterms when two partons become unresolved :

® Triple collinear: three momenta become parallel, p; || p, || p,

@ Double collinear: two momentum pairs become parallel, p; || p,, p; | p,

® Soft collinear: one momentum pair becomes parallel, p, || p, , and a third
becomes soft p, — 0

@ Double Soft: two momenta become softp, = 0, p, = 0

4+ Mainly discuss about the double collinear subtraction term denoted by the

operator C,.




Preface to the computation

4+ Reverse unitarity: a very well known concept. For a generic massless external

momentum ¢g, we can write the on-shell condition as the difference of two
propagators with opposite prescription for their imaginary part, thereby:

1 | Anastasiou, Melnikov ,02]
2
5+(q ) — <?> C
C = cut propagators

4+ Topology: is a family of Feynman integrals characterized by the same set of
propagators. A generic Feynman integral of a given topology can be expressed
ds:

I(nl, ...,nN) — [ddkl...ddklf(kl, .“’kl’pl’ ...,pg)

1
D{ll...D]’;‘IN

flky, =+ ki prs -+, pp) =




Canonical form:

4+ IBP reduction : to express "complicated" Feynman integrals and their derivatives

as a linear combination of "simple" ones called master integrals (MIs) . The

relation stems from the equation.
| Chetyrkin, Tkachov,81]

0 N
0= [del--.deL
okt D,---Dy

4+ c¢-form of the differential equation : the MIs obtained after reduction are put
into a differential form using differential operators which reads as

N
dfie, (x) = (ZA,(e, () dxl-> fle. ()
i=1

where A; are Ny aster X NVmaster -matrices of rational functions in {x;} and €.




Canonical form:

e = = e e

@ Transforming the basis of MIs with an invertible transformation 7,

f =T {xHf

sets up the differential equation in canonical form: |[Henn , 13]

N
df'(e, {x;}) = e( D Allx}) dx,-> e {x})
=1

@ the only singularities of the differential are simple poles and the only
dependence on € is given by the explicit prefactor.

@ The algorithm for finding a rational transformation of a differential equation into
e-form is automated in several packages.

@ We use the Canonica package in Mathematica for this purpose.
|[Meyer, 17|




Iterated integrals:

e = = e e

® And the solution to the set of such differential equation is given as :
F = Pexple |40

@ where, P exple J'A/()_C))] gives the general solutions and f() is the boundary

vector determined from initial conditions.

® The canonical form allows the above path ordered exponential to be
written in terms of iterated integrals.

@ This enables a systematic study of the function space of the differential
equation's general solution.




Function space of the result

4+ Even if aresult is simple , it might be that our approach to the problem leads to a
complicated answer :

4+ Hence the final goal is to obtain an expression of the general solution in terms of :

@ Transcendental numbers: {,, log2,---

® Transcendental functions : a whole zoo was discovered

» Classical polylogarithms

» Harmonic polylogarithms

» 2d harmonic polylogarithms

» Cyclotomic harmonic polylogarithms

» All these are just special classes of multiple polylogarithms

» Elliptic polylogarithms

4+ In this talk : will concentrate exclusively on multiple polylogarithms .
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Polylogarithms

4+ Recursive definition of multiple polylogarithms (MPLSs),

<

¢ dt .
G(a, -+, a,;7) = J G(ay, -+, a,;1), Li(z) = J

4+ All the other polylogarithms are just special cases of MPLs,

@ Classical polylogarithms : Li,(z) = — G(0,---,0,1,7)
o Harmonic polylogarithms: a; € {—1,0,1}
® 2d harmonic polylogarithms: e.g., a; € {0,1,a}

@ Cyclotomic harmonic polylogarithms : roots of unity

dr _ .
_Lln—l(t)

o !

4+ Natural "invariants" attached to MPLs: weight = number of integrations

4+ The polylogarithms satisfy various complicated functional equations and

the simplicity of the answer might be hidden behind it.
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Hopf algebra of MPLs

4+ Algebra : vector space with an operation that allows one to "fuse" two
elements into one (multiplication)

alinearmapyu : A Q@ A — A
or in other words, alinear map , multiplication : (a, b) — ab

4+ Coalgebra : Vector space with an operation that allows one to "break into"
elements apart (comultiplication)

alinearmap A : A - A Q A
Ala)=a®1+1Qa, a e H, itscoproduct A(a) € o Q A

4+ Hopf algebra : Vector space with both multiplication and comultiplication, i.e.,
one can "fuse" and "break into" in a consistent manner.
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Preface to the computation

4+ Multiple polylogarithms form a Hopf algebra: |Goncharov, 05]

Anz)=1@Inz+Inz® 1
A(Lix(z)) = 1 ® Lix(z) + Lix(z) ® 1 — log(1 — z) ® log(z)

4+ Symbols : maximal iteration of the coproduct (modulo ix),

SF)=A, .  Mod ir

S(Lix(z)) = — log(1 — 2) ® log(z)

4 Since symbols are only in terms of logarithms conventionally the log-signs
are dropped and written as :

SLLN)=-1-2)8z8...0z

—

n—1
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Preface to the computation

4+ How are all these important?

4+ Imagine a two-loop multi-scale integral that evaluates to 1000 's of Lisg s

Too complicated to handle

Break it into pieces

° l 4

b ‘L) ® Li; ® Lip
‘Lir, ® Li; ® Li;’ ‘Li; ® Lir ® Li;’

N
N
\.
. ok \
»\r 3 1 y
b

L ®Li ®Li ®Li;’”

Still too . Lig R L

complicated

Symbols
Lij = —log(l — 2)
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Preface to the computation

4+ At the end of this procedure , we have broken everything into little pieces

( symbol), for which all identities are known.

4+ We then need to reassemble the pieces to find the simplified expression.
4+ Recall that the weight = number of integrations

4+ Examples:

® logx — weight1
®logx.logy — weight2

® Li,(x), G(ay, ...,a,;x) = weightn
2
T
e ir =log(—1) - weightl, o = Liy(1) = weight2,{, = Li,(1) = weightn,

® Rational numbers — weight O.
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Sector decomposition

4+ Sector decomposition : corresponds to a resolution of singularities by a

sequence of blow-ups. For instance, [Heinrich /O8]
1 1
I = J dx[ dy x~17¢ y‘e(x +y)_1
0 0

4+ The integral has overlapping singularity for x - Oandy — 0.Butif we divide the
integration region in two sectors then we get,

X

N + (2) — =

Y

1 1 1 1
I=J dx[ dt x=17%€ t_1+€(1+t)_1+J dy[ dr y™' 7% (1 +1)7!
0 0 0 0

4+ In practice, a single step of SD is not sufficient. We need to iterate this procedure.
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Preface to the computation

4+ At the end of the iteration : All singularities factorized .

4+ subtractions of the poles in € : expand the singular factors into distribution

1
+J dxx~17¢£(0).

0

1 1
J dxx~7¢f(x) —>J dxx~1-¢ [f(x) — £(0)

0 0

4+ This is equivalent to applying plus prescriptions.

4+ After this : Integral can be evaluated numerically for checks for each
coefficient of €

17




Integration of double collinear subtraction term

= _ = == = — -

4+ From previous talk we know that there is a factorization of the singularities in the
collinear/ soft limit :

[
Ui Mo (1P oo & 20 SIG X 1M, (DY) 17, 100
i=0

j partons removed

4+ Here the collinear factorization for final partons r and s collinear to initial partons
aand b

0 2 0 p(0
Cir;js | M,,E,H)Q(pia pr’ pja psa < '9paa pb) | X <M;§1 )(pir’ pjsa < -apaa pb) | P]([if?»(zi’ Zra kJ_, 6)
p(0 0
P](Cj fz(zj, Z. k., e) | MO(p., Pjs> -+ s Pas Pp))

® }A’j(f}) is the d- dimensional Altarelli-Parisi splitting function
iJj

® MO(p. Pjs> ***» Dg» Dp) is the reduced matrix element.
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Integration of double collinear subtraction term

——— e e e = —— = —

4+ The momentum mapping for well defined Sing](.i) and reduced matrix elements

A — H A
Pa = SarsPa Pl = NP, PYply ,m#r.s

Nt — H
pb — 5b,rspb’

o A\(P, IA’) is a proper Lorentz transformation that takes the massive
momentum P into a momentum of the same mass P.

o the fact that P2 = P? fixes the product of Sarsand &y o

o and the values of ¢, .. and &, .. are chosen as: |Gehrmann et.al. /07]
Sab — Sb(rs) Sab — S(rs)(ab) + Srs
fa,rs — Si(ab) = 2pj . (pa +pb)
Sab — Sa(rs) Sab

Eyrs = Sab — Sa(rs) Sab — S(rs)(ab) T Srs Siivab) = 2(Di +Pp) - (P, + Pp)
brs — .
Sab — Sb(rs) Sab

19




Integration of double collinear subtraction term

4+ Now after all the re-definition we want to compute the following integral for
double collinear counterterm :

X1X2 A O A O
[ d¢rs(pra psa x]a Xz) T2 T2 Péf)(xa,r’ kj_ra E)P(Bf)(xb’s, kj_sa G)Fifif(xa,ra Xb,sa 5a,rsa gb,rs) .
2 Xa,rSar*b,s5bs Larlpg ’ S
S(ab) Ss(ab) For x _ (Sab = Sr(an))Sap = Ss(ab))
@ Xa,r =1- , xb,s =1- , @ lflf( a,r *b,s’ fa,rs’ 5b,rs) Sab(sab — Sirs)(ab) n Srs)

Sab Sab

4+ Making use of reverse unitarity we define the cut propagators:

Dl — prz’ D2 — psz’ D3 — (pa +pb — Dy _ps)z — X1X284p> D4 — x2(sab — Sps T Sbr) _ xl(Sab — Sas T Sar)

4+ Then the integral measure becomes :

1

d¢.. = d%p,d"°
’ *D,D,D;D,

20




Finding the topologies

4+ After some simplification this is what the final form looks like :

J dﬁbrs(L + : ) < I + I > Sdb(xl (Sab ~ Sar T SdS) T x2<Sab — Spr — Sbs))
2

xa,r 1+ xa,r xb,s 1+ xb,s xa,rxb,ssarsbs

(Sab —Sar — Sas) (Sab — Spr — Sbs)

X 2
X1 X84,

+ Now we want to define some topologies that include the above integrals
and reduce them to MIs.

4+ A topology with two external momenta (p,, p;,) and two loop momenta
(p,, p,) has to contain 7 independent propagators.
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Finding the master integrals

4+ Using partial fraction decomposition, all integrals were mapped into specific

topologies, ensuring each topology includes D, D, , D; and D, as cut

propagators, while the remaining three propagators were defined to maintain
independence.

4+ The Double Soft counterterm was decomposed into 3 topologies, Collinear Soft
into 3 topologies, Double Collinear into 6 topologies, and Triple Collinear into
17 topologies.

4+ These topologies were then taken for IBP reductions in Kira, yielding 15 MIs for

Double Soft, 14 for Collinear Soft, 24 for Double Collinear, and 28 for Triple
Collinear.

[Maierhoefer et. al.,”17]
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Finding the canonical form

4+ MIs were evaluated via Differential Equations in e-factorized form.

4+ For Double Soft and Collinear Soft, the Canonica package successfully obtained
the e-factorized form.

4+ For Triple Collinear and Double Collinear, canonization had to be
performed block by block .

4 Sub-sectors not requiring non-rational transformations were directly canonized
using Canonica.

4+ For the remaining sub-sectors, a two-step basis transformation was applied:

" First, transformed to a new basis ensuring only ¢ and eV dependency.

* Then, another change of basis was performed to integrate out eV

dependency.
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- Canonization of G, topology

4+ Let’s take one of the topologies (G ) of double collinear and break down the
method of canonization procedure.

Topology G, : Ds = s

ar?

D6 = Sab — Sas — Sbs’D7 = Spg -

+ The system of differential equations w.r.t the variables x; and x, is:

axlf(xla x29 6) — A(l)(xla x25 e)f(xla x29 6)

axlf(xla Xz, €) — A(z)(xla x29 G)f(xla x29 6)

o where A and A® are 11 x 11 matrices whose coefficients depend in
rational way on x;, x, and €.

® the first 7 X 7 sub-block does not require non- rational transformation.

@ hence this part was done using Canonica.

24




Canonization of G, topology

)

e e e 00 e e 0000
e e e 0e O0e OO0 O0O0
e e e 0e Oe O O0O00O0
0 00 e e e 0 0O0O00O0
0 00 0 e e 00000
0 00 0 e e 00000

[

O 0 0 0 x O 0 0 x 0 0
000 «x «x 0O0O0O0 %« 0
\********OO*)

Ay, =

)

e e e 00 e e 0000
e e e 0e O0Oe O 0O0O0
e e e 0e O0Oe O 0O0O0
0 00ee O0O0O0O00O0
0 00 0 e e 00000
0 00 0O e e 00 O0O00
0 e e 00 0 e O 000

(

x x x x x x x x 0 0 0
0000 «x = 00 x 00
0 OO0 0 x 0 0 0 e x 0
\********60*)

4+ Then the change of basis leads to the following new matrices which look like
this :

Ay =

® ¢ denotes a non-zero element proportional to e.

@ * denotes a non-zero element proportional to polynomial in ¢.
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- Canonization of G, topology

4+ At first we proceed with the all the under diagonal terms for rows from 8 to 11.

4+ The € dependence of these coefficients are in the form :

e( — 4+ 32e — 95¢ + 130e” — 81e* + 18¢”) = ea(e)

4+ Now to get rid of this polynomial we make a change of basis :

/10000000 0 0 0\

0100000 O 0 0 0

0010000 0O 0 0 0

o - 0001000 O 0 0 O
J' = Tyt 0000100 0 0 0 0
with, ZTao=[0000010 0 0 0 0

i -1 0000001 0O 0 0 0
Axi — a(e)AxiTa(e) 0000000 ale 0 0 0
0000000 0 afk 0 0

0000000 0 0 af O

\10000000 0 0a(e)/

4+ with this transformation all the diagonal sub-blocks are proportional to ¢ and €°.
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- Canonization of G, topology

4+ Non-rational tcransformation of the basis are needed for rows from 8 to 11.

4+ The ¢ dependency for the sub-blocks 8 to 10 reads as :
axlf/(xla X, €) = Axl(xla Xy, €)f (X1, Xy, €)

axzf,(xla Xz, €) — sz(-xla .Xz, G)f,(-xla -x29 6)

i

=
—
—

xT1 T2

)
|
O OO 0D OO OO0 d D
D OO 00 O OO0 O o O
* O O ¥ O O O OO OO
D O ¥ OO OO oo oo
O % O O O O O O O O O
A OO0 OO O 0 OO O
A OO D O O OO D d D
* O QO % O O O O O O O
OO ¥ OO O OO O OO
O ¥ O O O O O O OO O
* O O O O OO OO OO

A Dd® A D O DD D O
QO O O 0 O d o O O D

QO OO DD O O OO D Ad D
D OO DD O O OO D D
A O D O D DD D O
QO O D O 0 OO O
C OO0 B OO0 ® O
¥ 000000 OO
o
|
T OO OO A B
T OO D OO A B
T OO D OO ® B

N—

@ ¢ denotes a non-zero element ® * denotes a non-zero element

proportional to €. proportional to € and eV,
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- Canonization of G, topology

4+ At first we begin with sub- block from 8 to 10 where the differential equation
reads as : e.g. for 8th master integral :

8
Oy fs=¢€ < ZAx,-,s,j J§-> +B,gs fg 1€ {12}
j=1

4+ So in order to get the above equation proportional to € we have to make a
change of basis : fg = fg(x{, x,)gg Where

axit8(xl,X2) — Bxl-,8,8 tS(XI,X2), l = {1,2}

4+ Now for the 11 th sub-block , the differential equation reads as:

10
O, f11 = €< ZAxl-,ll,j ]§> +B 1 it Bonig Je 1€ 11L2)
j=1

+ As before we can integrate out B, |, |; term via a change of basis : f;; = #;,(x;,X,)g1;
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- Canonization of G, topology

4 And to remove B 11.8We make a shift transformation:

J11(x1, x5, €) = f11(x), X5, €) + Gg(xy, X5)fg(X1, X5, €) .

4+ then the differential equation reads as:

0 A (i I I
g(fn — Ggfg) = GA;(C,.?n,n(fll — Ggfy) + GZA)(C)llj B)f )11 8f8

4+ Implying the constraint:

0Gg(x{, X5) l
—— B (n,x0) =0

l

4 With this the canonical form is reached :

11
df=e<2€idlogLi>f

i=1
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Finding the boundary constants

e

4+ C;isall X 11 -matrix, whose entries are algebraic numbers.
4+ the general solution was obtained in terms of MPLs up to weight 3

4+ For boundary constant the phase space integrals are then solved as :
» choose explicit parametrization of phase space.

o write the parametric integral representation in chosen variables.

resolve the € poles by sector decomposition.

e pole coefficients are finite parametric integrals.

evaluate the parametric integrals in terms of MPLs.

4+ Details on direct integration method : Sam Van Thurenhout's talk in the future .
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Simplifying the solutions

4+ Simplification is carried out in two steps :

Step 1: the MPLs were reduced to a function which is a linear combination of
(products of) classical polylogarithms :

G(a.b;c) = ) ¢; Lix(fia. b,c)) + ) ¢y log(gi(a, b, c)) log(hy(a, b, c))

I j.k

+ ¢}, ¢y are rational numbers and fis g h,, are rational functions.

4+ The arguments of these functions lie within the unit circle such that no

branch cuts singularities are crossed.

Step 2: find an independent set of Li, by exploiting the relations among
classical polylogarithms of different arguments.
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An example of simplification:
4+ Let’s simplify G(—1,1; x) in terms of dilogarithms and logs :
4+ The symbol of G(—1,1;x):

SG-1L,Lx)=1+)Q2+(1—)Q@(UI—-—x)—(1-x)Q2

4+ Make an ansatz for G(—1,1;x):

l

G(—1L1:x) = ) ¢; Libx(f(x) + ) ¢ log(g(x)) log(iy(x))
J.k

4+ Now the coefficients can be determined by projecting the symmetric and
anti-symmetric part of the symbol.
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An example of simplification:

4+ Notations for decomposition of symmetric and anti-symmetric part :.

aO0b=a@®@®b+bQ a, aANb=a@®b—-b R a,

1 1
such that, a®b=5a®b+5a/\b.

4+ Then the anti-symmetric part of the S(G(—1,1; x)) simplifies to :
(1 ~ 1+x> N 1 +x _ —S<Liz<1+x>> |
2 2 2

4+ and since the product of logarithms is totally symmetric , the coefficient of the
product of logarithms can be determined as :

1 +x

S<G(—1,1;x)+Liz< >> =2®(1+x)—%(2®2)

1
= S<10g2 log(1 + x) — 5 log? 2>

33




An example of simplification:

4+ We have to also account for weight 2 constants independent of x. This can
be done by taking some limit.

1+ 1
{G(—l,l;x)— [— L12< 2x> +log?2 log(l +x)—510g22] } ‘x:():ﬂ_

4 Thus we obtadin,

1+ 1 2
G(—l,l;x):—L12< 2x>+log2 log(1+x)—510g22+7lz—2.

4+ Computation of symbols and projector operators is implemented in

PolyLogTools package.
|[Duhr, 19]
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Conclusion

4+ Following all these methods and tools, fully analytical integrated counterterms
are now available.

4+ With this we have extended the CoLoRFUulNNLO scheme to hadron-hadron
collisions.

+ All the results are implemented in local subtraction code : NNLOCAL

https:/github.com/nnlocal/nnlocal

4+ So far only the gluon channel in gluon fusion Higgs production in HEFT
(M, — oo) with no light quarks (nf — () is implemented.

4+ The inclusion of all quark channels and optimisation of the code is currently
underway.

= e _ = = = —
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