# Image Reconstruction with Proton Computed Tomography

GPU Day Budapest 2025.05.22.

#### ZSÓFIA JÓLESZ jolesz.zsofia@wigner.hun-ren.hu





EÖTVÖS LORÁND university | budapest

#### Introduction



- Cancer therapy: surgery, chemotherapy, <u>radiotherapy</u>, immunotherapy
- Radiotherapy: uses ionizing particles  $\rightarrow$
- Photons, protons, heavy ions



Dose deposit characteristics of high energy photons (blue), protons (green), and heavy ions (red)



Layout figure of the HIT Centre (Heidelberg)



# **Problems with imaging – and the solution**



Proton CT vs. X-ray CT

Detector

- Today X-ray CT is used
- We need to know the range of the protons → Relative Stopping Power (RSP): how much does it slow down in a material compared to water
- Difference between the absorption of photons and the energy loss of protons  $\rightarrow$  conversion is not accurate between Hounsfield units<sup>\*</sup> and RSP
- Solution: let's do the imaging with protons!  $\rightarrow$  proton CT

# The Bergen pCT Collaboration

- Goal: to build a proton CT based on the high-energy particle detectors used in the CERN ALICE collaboration (technology transfer)
- The detector system is based on the ALPIDE chip

  - Monolithic Active Pixel Sensor (MAPS)
  - Sensors are on the same layer with readout electronics



#### Process of the reconstruction





Initial image























Simulating energy and position uncertainties of proton trajectories

- → From correlated Gaussian distributions
- → ~2 MeV energy uncertainty







# Adaptive grouped processing of proton trajectories

- Data to be processed is grouped
- Consecutive iterations are compared
- If MSE < given threshold before the 10.</li>
  iteration, threshold gets divided by 2,
  otherwise continue with the next group



Runtime got significantly shorter (hours → minutes) (~10<sup>6</sup> protons)

# **Evaluation of the algorithm - phantoms**

Derenzo



- 200 mm diameter water cylinder
- 6 sectors with 1.5-6 mm diameter aluminium rods
- Used for measuring spatial resolution



**CTP404** 

- 150 mm diameter epoxy cylinder
- 8 different material inserts, 12.2 mm diameter cylinders
- Used for measuring reconstructed RSP accuracy

**CTP528** 



- 150 mm diameter water cylinder
- 1-21 aluminium linepairs per cm
- Used for measuring spatial resolution



Good measure for spatial resolution: Modulation Transfer Function [lp/mm] → how well can we differentiate between two objects on an image



The more linepairs we can differentiate, the better the resolution is





Processed proton tracks

#### Spatial resolution with CTP528 phantom



ArXiv:2212.00126v2

#### RSP reconstruction accuracy with CTP404 phantom



# RSP reconstruction accuracy with CTP404 phantom



# Summary of achievements and future plans

- Richardson-Lucy algorithm used for the first time in medical imaging
- Promising results (using ~10<sup>6</sup> protons), comparable with other used algorithms
- OTDK 1<sup>st</sup> place
- Further developments for clinical usability
  - Precise 3D reconstruction
  - Robust evaluation with realistic phantoms
  - · Further improvement in runtime
  - · Using Machine Learning for noise filtering, MLP calculation, etc.

#### References

- J. Alme, G. G. Barnaföldi, R. Barthel, V. Borshchov, T. Bodova, A. Van den Brink, S. Brons, M. Chaar, V. Eikeland, G. Feofilov et al., *Frontiers in Physics* **8**, 568243386 (2020)
- L. B. Lucy, Astronomical Journal, Vol. 79, p. 745 (1974) 79, 745 (1974)
- W. H. Richardson, J. Opt. Soc. Am. 62, 55 (1972)
- D. Wang et al., Medical physics 37.8 (2010)
- J.R. Sølie et al., *Physics in Medicine & Biology* **65.13** (2020)

My research was supported by the WSCLAB and the Hungarian National Research, Development and Innovation Office (NKFIH) grants under the contract numbers OTKA K135515 and 2021-4.1.2-NEMZ\_KI-2024-00033.