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Introduction: modeling and AI

Approaches to represent the world
we do observation, modeling and solving the models
observation tools           use observation data, we model and solve
computational tools          use data, we model, solve with computer
AI tools to set up models!          no human interaction at all

What remains as human role?
decision: draw the consequences of the results
understand the basic motivations that lead to the actual model 
(symmetries, relations)
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Introduction: modeling and AI

Symmetries and relations
translational invariance (e.g. image recognition)          CNN
scale invariance (e.g. image recognition)          deep networks & pooling
Markovian systems (e.g. dynamics)         only the latest data is relevant

If no evident symmetry?
assume a general model – not efficient (too lot of parameters)
attention mechanism, the system learns what is important for the 
present context (e.g in LLM)
generic strategy: reveal causal relations
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Causality

Causality: change in a data channel implies change in another later
possible causal relations: X, Y are systems

X ╨ Y (X and Y are independent)
X → Y (X drives Y), changes in X imply changes in Y
X ↔ Y (X and Y are interdependent), changes imply change in the other
∃ Z that Z → X and Z → Y, but not interdependent (common cause)

some combinations are logically impossible (e.g. ∃ Z that Z → X, X→ Y)
the basic causal classes should be distinguishable 



5

Causality

Causality methods
Wiener-Granger causality: 

assumes a linear stochastic model (AR-like model) between the data 
series, compares the cases when to predict Y we include the past of X or 
not (the null hypothesis)
great to present predictive precedence, but not really causal relation
can not distinguish common cause and bidirectional causal relation
assumes linearity and stationarity
works in stochastic models
very popular, used in lot of applications
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Causality

Causality methods
Convergent Cross Mapping: (Sugihara)

based on state space reconstruction (Taken’s theorem): studying the 
embedding                                of the time series allows to reconstruct 
the complete dynamics
we can try to predict     from embedding of X (nearest neighbors) and 
calculate quality of the reconstruction
works in deterministic cases
detecting common cause is somewhat heuristic

[X t , X t−τ ,…X t−(k−1) τ]

Y t
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Causality

Causality methods
Dimensional causality: (Telcs et al.)

idea: if X → Y, then the dimension of the attractor of Y is larger than that 
of X
study the dimension of X, Y and (XY), and compare the dimansions
appropriate to demonstrate all types of causal relations
works in deterministic systems (definition of “dimension”)
determining dimension can be tricky
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Degrees of freedom method

idea: the information necessary to reconstruct a data series contains the 
information of the driving system
for k-th order differential/differentia equations:
necessary information:  
degrees of freedom is the necessary initial conditions
“causal relations” in recursive equations:

X → Y: 
X ↔ Y:
Z common cause:  

X n=f (X n−1 ,…, X n−k)
X 1 ,… , X k

X n=f (X ),   Y n=g(X ,Y )
X n=f (X ,Y ),   Y n=g (X ,Y )

Zn=h (Z ) ,   , X n=f (X ,Z ),   Y n=g (Y ,Z )
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Degrees of freedom method

consequence:
X → Y:  
X ↔ Y:
Z common cause:  

how can we determine the degrees of freedom?
what comes after a certain                 series?
if         , only a single value allowed, for        values distribution
for stochastic case: distribution stabilizes after k
problem fixing all earlier value allows very few data (statistics)

X n=f (X ,Y ),   Y n=g (X ,Y )
Zn=h (Z ) ,   , X n=f (X ,Z ) ,   Y n=g (Y ,Z )

X n=f (X ),   Y n=g(X ,Y ) d X<dY
d X=dY

d X+dY<d XY

X 1 ,… , X a
a⩾k a<k
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Degrees of freedom method

strategy:
X data series, filter it according to some condition posed at generic n
      → W is the “window size”, how many values are allowed
use milder conditions, gradually stricter ones (finite size scaling)
calculate                               conditional probabilities

expectation:
for large W                         (no information)
for W→0:                                                   (no statistics)
from the saturation of the curve we read off the information

CW

Pi ,W=P (X n+i  ∣ CW )

Pi ,W→∞=P (Xn)
Pi ,W→0=P (X n  ∣ Xn−1 ,…, X n−a)
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Degrees of freedom method

stochastic case: all works, but for W→0 we do not get a sharp distribution
only those degrees of freedom can be found, where the noise is smaller 
than the information carried by the given mode
generic lesson

in real world everything affects to everything (Mars on the pendulum)
a huge number of modes have tiny effects
measurement accuracy is finite
only a finite number of modes are taken into account, the rest we treat 
as “noise”
number of degrees of freedom depends on the accuracy!
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Degrees of freedom method

actual example: linear stochastic system → analytically tractable
X, Y, Z subsystems, Z is autonomous, it is a common cause for X,Y
condition: all past elements are in a window [-W,W]
Z subsystem: one condition fully determines the system → 
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Degrees of freedom method

X (and Y) subsystems: one condition does not determines fully the result, 
but two already yes:
in the stochastic case: noise level       , signal level              → observable

df X=2
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Degrees of freedom method

XZ subsystem: one condition (pair) determines fully both X and Z → 
consqeuence: Z→X

df XZ=2
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Degrees of freedom method

XZ subsystem: one condition (pair) dos not determine fully Y!
consqeuence: Y has independent information, so X and Y do not determine 
each other → Z is a common cause
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Degrees of freedom method

benchmark example: chicken and egg
U.S. Department of Agriculture data, for the period 1930–1980
which drives the other?

eggs affects chicken data, but not reversely: egg→chicken 
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Constraining eggs data
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Conclusion

causality helps explore the connection between data → first step in setting 
up a dynamic model
degrees of freedom method: determine, how many information is needed 
to fully constrain a time series
all causal relations can be deducted
number of df, and so the causality, can depend on the observational 
accuracy
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