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Introduction: modeling and Al

@ Approaches to represent the world
- we do observation, modeling and solving the models
= observation tools :> use observation data, we model and solve
= computational tools :> use data, we model, solve with computer
= Al tools to set up models! :> no human interaction at all

@ What remains as human role?
= decision: draw the consequences of the results

= understand the basic motivations that lead to the actual model
(symmetries, relations)
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Introduction: modeling and Al

@ Symmetries and relations
= translational invariance (e.g. image recognition) :> CNN
= scale invariance (e.g. image recognition) :> deep networks & pooling
= Markovian systems (e.g. dynamics) :> only the latest data is relevant
@ If no evident symmetry?
-+ assume a general model - not efficient (too lot of parameters)

-+ attention mechanism, the system learns what is important for the
present context (e.g in LLM)

-+ generic strategy: reveal causal relations
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Causality

@ Causality: change in a data channel implies change in another later
@ possible causal relations: X, Y are systems
- X LY (XandY are independent)
-~ X = Y (X drives Y), changes in X imply changesinY
- X <Y (X and Y are interdependent), changes imply change in the other
-3ZthatZ-> Xand Z - Y, but not interdependent (common cause)
@ some combinations are logically impossible (e.g. 3ZthatZ - X, X=Y)
@ the basic causal classes should be distinguishable
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Causality

Causality methods

@ Wiener-Granger causality:

-+ assumes a linear stochastic model (AR-like model) between the data
series, compares the cases when to predict Y we include the past of X or
not (the null hypothesis)

= great to present predictive precedence, but not really causal relation
= can not distinguish common cause and bidirectional causal relation
-+ assumes linearity and stationarity

= works in stochastic models

= very popular, used in lot of applications
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Causality

Causality methods

@ Convergent Cross Mapping: (Sugihara)

-+ pased on state space reconstruction (Taken’s theorem): studying the
embedding [X,,X, ,,...X,_(_y).Jof the time series allows to reconstruct
the complete dynamics

-+ we can try to predict Y, from embedding of X (nearest neighbors) and
calculate quality of the reconstruction

= works in deterministic cases
-+ detecting common cause is somewhat heuristic
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Causality

Causality methods

@ Dimensional causality: (Telcs et al.)

= |dea: if X = Y, then the dimension of the attractor of Y is larger than that
of X

= study the dimension of X, Y and (XY), and compare the dimansions
- appropriate to demonstrate all types of causal relations

= works in deterministic systems (definition of “dimension”)

-+ determining dimension can be tricky
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Degrees of freedom method

@ idea: the information necessary to reconstruct a data series contains the
information of the driving system

@ for k-th order differential/differentia equations: X =f(X,_,,...,X _,)
necessary information: X,..., X,

@ degrees of freedom is the necessary initial conditions
@ “causal relations” in recursive equations:

=X-Y X =f(X), Y =¢g(X,Y)

~XeY X, =f(X,Y), ¥ =g(X,Y)

= Z common cause: Z,=h(Z), ,X =f(X,Z), Y =g(Y,Z)
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Degrees of freedom method

@ consequence:
«X->Y X =f(X), Y =¢g(X,Y) ) dy<dy
= X<Y X =f(X,)Y), Y,=g(X,Y) [ d,=d,
~ Z common cause: Zn—h( ), X, =f(X,Z), Y,=g(Y,Z)[ ) dy+dy<dy

@ how can we determine the degrees of freedom?
- what comes after a certain X,,...,X, series?
= if a=k, only a single value allowed, for a<kvalues distribution
= for stochastic case: distribution stabilizes after k
= problem fixing all earlier value allows very few data (statistics)
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Degrees of freedom method

@ strategy:
-+ X data series, filter it according to some condition posed at generic n

- C,, - W is the “window size”, how many values are allowed
-+ use milder conditions, gradually stricter ones (finite size scaling)
=+ calculate P, ,=P(X,,, | C,,) conditional probabilities
@ expectation:
- for large W P,,W%OZP(X,I) (no information)
= for W-0: P, y.0=P(X, | X,_1,-...X,_.) (no statistics)
= from the saturation of the curve we read off the information
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Degrees of freedom method

@ stochastic case: all works, but for W—0 we do not get a sharp distribution

@ only those degrees of freedom can be found, where the noise is smaller
than the information carried by the given mode

@ generic lesson
-+ in real world everything affects to everything (Mars on the pendulum)
-+ a huge number of modes have tiny effects
- measurement accuracy is finite

-~ only a finite number of modes are taken into account, the rest we treat
as “noise”

=~ number of degrees of freedom depends on the accuracy!
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Degrees of freedom method

@ actual example: linear stochastic system — analytically tractable
@ X, Y, Z subsystems, Z is autonomous, it is a common cause for X,Y
@ condition: all past elements are in a window [-W,W]

@ Z subsystem: one condition fully determines the system -» df ;=1
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Degrees of freedom method

@ X (and Y) subsystems: one condition does not determines fully the result,
but two already yes: df xy=2

@ in the stochastic case: noise level 107% signal level 5x107° - observable
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Degrees of freedom method

@ XZ subsystem: one condition (pair) determines fully both X and Z » df 4x,=2
@ consgeuence: Z-X
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Degrees of freedom method

@ XZ subsystem: one condition (pair) dos not determine fully Y!

@ consgeuence: Y has independent information, so X and Y do not determine
each other - Z is a common cause
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Degrees of freedom method

@ benchmark example: chicken and egg 3
= U.S. Department of Agriculture data, for the period 1930-1980
- which drives the other? °

@ eqggs affects chicken data, but not reversely: egg—chicken

Constraining chicken data
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Conclusion

@ causality helps explore the connection between data — first step in setting
up a dynamic model

@ degrees of freedom method: determine, how many information is needed
to fully constrain a time series

@ all causal relations can be deducted

@ number of df, and so the causality, can depend on the observational
accuracy
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