Laser-Ion Acceleration using Gold Nanorods

For plasmonic enhancement of Fusion reactions

Dr. Chris Grayson

THE UNIVERSITY OF ARIZONA Physics

The NanoPlasmonic Laser Induced Fusion Energy (NAPLIFE)

• Our goal is to use low energy **lasers** to **accelerate ions** to produce **nonequilbirum nano fusion**.

Equilibrium fusion requires enormous energies and densities NIF – 2 million joules

- Our goal is to use low energy lasers to accelerate ions to produce nonequilbirum nano fusion.
- Aneutronic proton-boron fusion
- p+¹¹B \rightarrow (3 ⁴He) + 8.7 MeV

Equilibrium fusion requires enormous energies and densities NIF – 2 million joules

• Our goal is to use low energy **lasers** to **accelerate ions** to produce **nonequilbirum nano fusion**.

Equilibrium fusion requires enormous energies and densities NIF – 2 million joules

• Our goal is to use low energy **lasers** to **accelerate ions** to produce **nonequilbirum nano fusion**.

Equilibrium fusion requires enormous energies and densities NIF – 2 million joules

• Our goal is to use low energy **lasers** to **accelerate ions** to produce **nonequilbirum nano fusion**.

 Our goal is to use low energy lasers to produce nonequilbirum fusion reactions.

Typical laser pointers have 10^9 times more energy but the energy is not sufficiently focused.

 Our goal is to use low energy lasers to produce nonequilbirum fusion reactions.

Typical laser pointers have 10⁹ times more energy but the energy is not sufficiently focused.


```
Femtosecond scale pulses 10<sup>-15</sup>
```

EFL

 Our goal is to use low energy lasers to produce nonequilbirum fusion reactions.

Our goal is to use low energy lasers to produce nonequilbirum fusion reactions.

How can **nano-structured** targets lead to **femtosecond** scale **ion acceleration**?

Huge Energy mismatch between laser and Fusion threshold

 $E = \hbar \omega_{laser} = 2 \ eV \rightarrow 100's \ keV \qquad 50,000 \ photons$

"Atomic"

"Nuclear"

How can **nano-structured** targets lead to **femtosecond** scale **ion acceleration**?

Huge Energy mismatch between laser and Fusion threshold

 $E = \hbar \omega_{laser} = 2 \ eV \rightarrow 100's \ keV$ (Nuclear Scale) **Solution** Use collective Elaser 85 nm electron motion. like (TNSA) 25 nm E_{Nano}

Locally increased Electric field Strength and Field Gradient

Locally increased Electric field Strength and Field Gradient

The NanoPlasmonic Laser Induced Fusion Energy

25 nm

85 nm

How can **nano-structured** targets lead to **femtosecond** scale **ion acceleration**?

Solution

like (TNSA)

 E_{Nano}

Use collective

electron motion.

Huge Energy mismatch between laser and Fusion threshold

 $E = \hbar \omega_{laser} = 2 \ eV \rightarrow 100's \ keV$ (Nuclear Scale)

Elaser

Antennas For Light

These nanorods **resonantly** absorb 800 *nm* light via **Localized Surface Plasmon resonance** (LSP)

$$\varepsilon_D \alpha E_0 \qquad \alpha = 4 \pi a^3 \frac{\varepsilon(\omega) - \varepsilon_D}{\varepsilon(\omega) + 2 \varepsilon_D}$$

The classical **polarizability diverges** when

$$Re[\varepsilon(\omega)] = -2 \varepsilon_D$$

Maier, Stefan A. Plasmonics: fundamentals and applications. Vol. 1. New York: springer, 2007.

LSP resonance can respond incredibly fast. $\omega_{LSP} = 2.65 fs$

 $\boldsymbol{p} = \varepsilon_0$

How can nano-structured targets lead to femtosecond scale ion acceleration?

Huge Energy mismatch between laser and Fusion threshold

Solution

like (TNSA)

 E_{Nano}

Use collective

 $E = \hbar \omega_{laser} = 2 \ eV \rightarrow 1 \ MeV$ (Fusion threshold)

Elaser

Antennas For Light

Bonyár, A. et al. Int. J. Mol. Sci. 2022, 23, 13575. Locally **increased** Electric field **Strength** and Field **Gradient**

How can **nano-structured** targets lead to **femtosecond** scale **ion acceleration**?

Huge Energy mismatch between laser and Fusion threshold

 $E = \hbar \omega_{laser} = 2 \ eV \rightarrow 1 \ MeV$ (Fusion threshold)

Antennas For Light

These nanorods **resonantly** absorb 800 *nm* light via **Localized Surface Plasmon resonance** (LSP)

Near Field Enhancement (NFE) of the electric field around the Nano rods causes increased ion acceleration

The **electric** field around the nanorod E is **enhanced** over the background **laser** field E_0 on the scale of 10's of nm

M. Csete Group: Dávid Vass, Emese Tóth, András Szenes, Balázs Bánhelyi

Field enhancement and absorption measured at low intensity: $I \sim 10^{12}$ W/cm²

Locally increased Electric field Strength and Field Gradient

The NAPLIFE project introduces nanostructured laser targets to generate more efficient proton acceleration for ultrafast pulsed lasers.

Many other initiatives use **nanostructures** to **enhance** ion **acceleration** – ours is **unique** in that we use **resonant localized plasmons (LSPR).**

The NAPLIFE project introduces nanostructured laser targets to generate more efficient proton acceleration for ultrafast pulsed lasers.

Many other initiatives use **nanostructures** to **enhance** ion **acceleration** – ours is **unique** in that we use **resonant localized plasmons (LSPR).**

The NanoPlasmonic Laser Induced Fusion Energy (NAPLIFE) UDMA-TEGMA (polymer) The NAPLIFE project 150 µm $I \approx 10^{17} - 10^{18} \text{W/cm}^2$ introduces eli 8**5** nm nanostructured laser targets to generate **FULBRIGHT** 500 nm Joined Sept. 2024 more efficient proton Hungary 25 nm (not to scale) acceleration for ultraaser fast pulsed lasers. beam $\lambda = 795 nm$ Parabolic mirror 0 $E \approx 20 - 30 m$ Many other initiatives use nanostructures to enhance ion acceleration ours is unique in that we use resonant localized plasmons (LSPR). sample Article Open access Published: 03 December 2024 Indication of $p + {}^{11}B$ reaction in Laser Induced Nanofusion experiment $\Delta t = 20 - 60 \, fs$ N. Kroó, L. P. Csernai ^M, I. Papp, M. A. Kedves, M. Aladi, <u>A. Bonyár</u>, <u>M. Szalóki, K. Osvay, P. Varmazyar, T. S.</u> Biró & (for the NAPLIFE Collaboration) $I \approx 10^{17} - 10^{18} \text{W/cm}^2$ Scientific Reports 14, Article number: 30087 (2024) Cite this article

UDMA-TEGMA (polymer) 🕈 1832 Accesses | 3 Altmetric | Metrics

NAPLIFE Previous Results

Nanorods lead to increased **proton acceleration** in **EPOCH** Simulations

István Papp et al. 2023 arXiv:2306.13445v2

Nanorod **doped** samples led to exponential **energy deposition** in the **target.**

Ágnes Szokol et al. arXiv:2402.18138

NAPLIFE Previous Results

Nanorods lead to increased proton acceleration in EPOCH Simulations

István Papp et al. 2023 arXiv:2306.13445v2

Nanorod **doped** samples led to exponential **energy deposition** in the **target.**

Ágnes Szokol et al. arXiv:2402.18138

Proton Acceleration from Nanoplasmons

The acceleration of protons and ions in the **pre-plasma**, is simulated with the **EPOCH** (**Particle in Cell**) simulation software in **3D** for a single nanorod.

 The output of PIC programs can tell you with accuracy what proton energies you will get but not the mechanisms by which they are accelerated

$$F(E, B, Z, \lambda, I, \dots) = ?$$

Using PIC to determine this dependencies requires a huge amount of computation time and data storage. 21

Proton Acceleration from Nanoplasmons

Simple theoretical calculations motivated by simulation can serve as efficient guiding principles to determine how to perform experiments and simulations.

$$F(E, B, Z, \lambda, I, ...) = F_{CoulombExp} + F_{pond} + F_{TNSA} + \cdots$$

Goal: make simplest model possible and compare to experiment

We will focus on forces that come directly from the nanorod the **ponderomotive force** and **Coulomb Explosion**

Plasmonic Ponderomotive Force

$\omega = 2.65 fs$ hc = 0.197 keV nm

Drift force due to the **oscillating electron cloud** around the gold nanorod due to **LSP resonance** that could **directly** couple to **ions**.

3D Simulations of Single Nanorods

Typically, the **ponderomotive force** is far too **small** to cause **direct acceleration** to **protons** due to their large **mass**.

$$\boldsymbol{F}_{\boldsymbol{p}} = -\frac{Z^2 (hc)^2}{2 m \omega^2} \nabla \langle (\boldsymbol{e}\boldsymbol{E})^2 \rangle_{2 \pi/\omega}$$

However, the ponderomotive force due to the oscillating field around a **nanorod** can be much larger due to **field enhancement** and increase in the field **gradient**.

the ∇E^2 term is ~**1600** times larger for the **nanorod** than the laser by field enhancement.

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \left\{ \frac{\omega^2}{c^2 r} (\hat{\mathbf{r}} \times \mathbf{p}) \times \hat{\mathbf{r}} + \left(\frac{1}{r^3} - \frac{i\omega}{cr^2}\right) (3\hat{\mathbf{r}} [\hat{\mathbf{r}} \cdot \mathbf{p}] - \mathbf{p}) \right\} e^{\frac{i\omega r}{c}} e^{-i\omega t} \quad \blacksquare \quad \mathbf{U}_{\mathbf{p}} = \frac{Z^2 \alpha^2 h c^4}{4m\omega^2} \left(\frac{p^2 r^2 + 3(\mathbf{r} \cdot \mathbf{p})^2}{r^8}\right) e^{\frac{i\omega r}{c}} e^{-i\omega t}$$

Increase in the ponderomotive force leads to more efficient electron and ion acceleration

Toy Model – Conducting Sphere

Dipole moment $p = Z_e R$ decide the field strength outside the nanorod

 Z_e – number of electrons $\approx 10^6$

Toy Model – Conducting Sphere

$$\omega \gg \frac{q_{L}}{mc} \qquad \Longrightarrow \qquad r(t) = r_{osc}(t) + r_{drift}(t)$$

EPOCH Simulations on GPU Cluster

The **3D nanorod** simulation study's the **plasmonic** effects of a **single** nanorod (*made partially by me and the previous postdoc István Papp*)

Simple model contains a **gold** cylinder with spherical end caps (85x25 nm) at solid density $5.9 \times 10^{22} cm^{-3}$ with charge state Au^{3+} covered with a neutralizing cloud of "**conducting**" electrons. The nanorod is surrounded by an **ionized** medium of **carbon** and **hydrogen**. The nanorod is then illuminated with $\lambda = 795 nm$ light with some pulse duration Δt_{pulse} with open boundary conditions for fields and particles run for 200 fs.

Focus on analyzing evolution of:

- Electric field
- Charge density
- Number density
- Particle energies
- Ion Energy spectra observable via Thompson parabola in experiment.

Proton Acceleration

 $I = 4.28 \times 10^{18} W/cm^2 \Delta t_{pulse} = 21 fs$

X

Electron Density

$$I = 4.28 \times 10^{18} W/cm^2 \Delta t_{pulse} = 21 fs$$

Electron Density

$$I = 4.28 \times 10^{18} W/cm^2 \Delta t_{pulse} = 21 fs$$

Highly ionized gold nanorod causes a Coulomb explosion in the local material. Au^{3+}

Ionization limit was set to Au^{3+} , but ionization can go up to Au^{20+}

Electron Density

$$I = 4.28 \times 10^{18} W/cm^2 \Delta t_{pulse} = 21 fs$$

Ion spectra –Coulomb Explosion

Ion spectra - Comparison

Ion spectra - Comparison

Why is the Ponderomotive effect on ions so small?

2.5

-2.0

- 1.5

- 1.0

0.5

$$E_{sim}/E_{0}$$

$$NFE \approx 2 - 4$$

$$E_{0} = \sqrt{\frac{2 I}{\varepsilon c}} \qquad I = 4 \times 10^{18} W/cm^{2}$$

$$\varepsilon = \varepsilon_{r}\varepsilon_{0} = 2.25\varepsilon_{0}$$
similar results found in a previous publication

$$I_x = 0.3 I_p \frac{S_{\text{CB}}}{\sigma} = 25.9 I_p$$

$$S_{\rm NR} = 0.5 \, Ip \, S_{\rm NR} = 25.5 \, Ip$$

I. Papp (2022) $NFE = \sqrt{25.9} \approx 5$

EPOCH predicts very **small near field** enhancement (NFE) in comparison to theory.

The **3D nanorod** simulation study's the **plasmonic** effects of a **single** nanorod

gold cylinder with spherical end caps (85x25 nm) at solid density $5.9 \times 10^{22} cm^{-3}$ with charge state Au^{3+} covered with a neutralizing cloud of "**conducting**" electrons. The nanorod is surrounded by an **ionized** medium of **hydrogen**. The nanorod is then illuminated with $\lambda = 795 nm$ light with some pulse duration Δt_{pulse} with open boundary conditions for fields and particles run for 200 fs. **Measure the Near Field Enhancement Predicted by Epoch**

Conclusion

- For low density of nanorods unoriented, short pulse duration and high intensity ($I > 10^{17} W/cm^2$). The dominant acceleration process is coulomb explosion.
- In the future we will use nanorod **arrays** which can reduce **electron spillage** by sharing electrons.
 - Preliminary results show that arrays lead to larger peak energies for ions and increase in electron temperature T_e.
 - Previously shown for non-resonant nanorods Vallières et al. (2021)
- For ponderomotive nanorod acceleration one must use low intensity $< 10^{15}$ W/cm² and long pulse duration, and structured nano targets, such that protons will continue to acquire energy from multiple nano rods.
- Next week we go to ELI in Szeged for more measurements!

Resonance condition

Elaser 25 nm ENano E

Locally increased field Strength and Field Gradient

These nanorods **resonantly** absorb 800 *nm* light via **Localized Surface Plasmon resonance** (LSP)

$$E_{0}$$

$$e(\omega)$$

$$E_{D}$$

$$E_{D}$$

 $\boldsymbol{p} = \varepsilon_0 \varepsilon_D \alpha \boldsymbol{E_0}$

The classical **polarizability** diverges when

 $\alpha = 4 \pi a^3 \frac{\varepsilon(\omega) - \varepsilon_D}{\varepsilon(\omega) + 2 \varepsilon_D}$

$$Re[\varepsilon(\omega)] = -2 \varepsilon_D$$

Maier, Stefan A. Plasmonics: fundamentals and applications. Vol. 1. New York: springer, 2007.

This leads to quantum effects such as **focusing** past the **diffraction limit, resonant absorption** of light, and electric **field enhancement.**

LSP resonance can respond incredibly fast. $\omega_{LSP} = 2.65 fs$

Why is the NFE effect on ions so small?

2.5

-2.0

- 1.5

- 1.0

- 0.5

$$E_{sim}/E_{0}$$

$$NFE \approx 2 - 4$$

$$E_{D}(\omega)?$$

$$E_{0} = \sqrt{\frac{2 I}{\varepsilon c}} \qquad I = 4 \times 10^{17} W/cm^{2}}$$

$$\varepsilon = \varepsilon_{r}\varepsilon_{0} = 2.25\varepsilon_{0}$$

-3.0 similar results found in a previous publication

$$I_x = 0.3 I_p \frac{S_{\text{CB}}}{S_{\text{NR}}} = 25.9 I_p$$

I. Papp (2022) $NFE = \sqrt{25.9} \approx 5$

EPOCH predicts very **small near field** enhancement (NFE) in comparison to theory at high intensities.

The **3D** nanorod simulation study's the plasmonic effects of a single nanorod

gold cylinder with spherical end caps (85x25 nm) at solid density $5.9 \times 10^{22} cm^{-3}$ with charge state Au^{3+} covered with a neutralizing cloud of "**conducting**" electrons. The nanorod is surrounded by an **ionized** medium of **hydrogen**. The nanorod is then illuminated with $\lambda = 795 nm$ light with some pulse duration Δt_{pulse} with open boundary conditions for fields and particles run for 200 fs. **Measure the Near Field Enhancement Predicted by Epoch**

Conclusion

Open Questions and Improvements:

- Tailor medium to better represent UDMA $\varepsilon_D(\omega)$.
- Why does the resonance decrease at high intensity?
- NFE does <u>not</u> decrease due to ionization....
 - Why is there a late time NFE?
 - Can the phenomena responsible for this be used to create more resonance at higher intensities?

Measure the Near Field Enhancement Predicted by Epoch

Measured	Species	Charge	Theoretical q/m $$	Absolute Error	Percent Error (%)
0.167201	C	2	0.166667	0.000533845	0.319284
0.251389	0	4	0.250079	0.00130935	0.520845
0.987769	Н	1	0.992236	0.00446716	0.452247
0.18821	0	3	0.18756	0.000650176	0.345453
0.0847248	C	1	0.0833333	0.00139142	1.64228
0.0846572	С	1	0.0833333	0.00132385	1.56378
0.249623	C	3	0.25	0.000376823	0.150957
0.0843078	C	1	0.0833333	0.000974506	1.15589
0.0834283	С	1	0.0833333	0.0000949199	0.113774
0.0837136	C	1	0.0833333	0.000380273	0.454255
0.0838404	C	1	0.0833333	0.000507066	0.604799

90th Percentile Energy

Can **nano-structured** targets lead to **femtosecond** scale **ion acceleration**?

Huge factor to overcome $\rightarrow \frac{a_{0p}}{r} = \frac{m_e}{m} \approx 5 \times 10^{-4}$ m_p a_{0e} Solution Use collective Elaser 85 nm electron motion. like (TNSA) 25 nm E_{Nano}

These nanorods **resonantly** absorb 800 *nm* light via **Localized Surface Plasmon resonance** (LSP)

$$\boldsymbol{p} = \varepsilon_0 \varepsilon_D \alpha \boldsymbol{E_0} \qquad \alpha = 4 \pi a^3 \frac{\varepsilon(\omega) - \varepsilon_D}{\varepsilon(\omega) + 2 \varepsilon_D}$$

The classical **polarizability diverges** when

$$Re[\varepsilon(\omega)] = -2 \varepsilon_D$$

Maier, Stefan A. Plasmonics: fundamentals and applications. Vol. 1. New York: springer, 2007.

This leads to quantum effects such as **focusing** past the **diffraction limit, resonant absorption** of light, and electric **field enhancement.**

LSP resonance can respond incredibly fast. $\omega_{LSP} = 2.65 fs$

Locally increased field Strength and Field Gradient

Plasmonic Ponderomotive Force

$\omega = 2.65 fs$ hc = 0.197 keV nm

Our group was mainly interested in forces due to the **oscillating electron cloud** around the gold nanorod due to **LSP** resonance that could directly couple to ions.

Typically, the **ponderomotive force** is far too **small** to cause **direct acceleration** to **protons** due to their large **mass**.

However, the ponderomotive force due to the oscillating field around a **nanorod** can be much larger due to **field enhancement** and increase in the field **gradient**.

the ∇E^2 term is ~**1600** times larger for the nanorod than the laser by field enhancement.

$$\mathbf{U}_{\mathbf{p}} = \frac{Z^2 \alpha^2 h c^4}{4m\omega^2} \left(\frac{p^2 r^2 + 3(\mathbf{r} \cdot \mathbf{p})^2}{r^8} \right)$$

 $U_p(nanorod) = 4 MeV$ (for a proton)

$$\mathbf{p} = N_e e \mathbf{d} \approx 10^6 e \ (85 \ nm) \hat{\mathbf{z}}$$

 $I = 4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

 $I = 4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

 $I = 4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

 $I = 4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

IDENSIFY OF SET UP: I = $4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

IDENSIFY OF SET UP: I = $4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

Ion spectra -EPOCH $I = 4.28 \times 10^{18} W/cm^2$ $\Delta t_{pulse} = 21 fs$

