
Compute kernels in your browser

Dániel Berényi

GPU Day 2025

Graphics technologies on the web

• Images (raster, vector)

• CSS tricks hacks

• HTML 5 canvas (2D drawing commands)

• WebGL and WebGL 2 for 3D

A long list of attempts that did not really gain traction.

(VRML/X3D, O3D, WebCL, OpenVG, …)

Why do we need another API on the web?

We already have WebGL and WebGL 2…
but, they:

… are built on the legacy OpenGL abstraction
implicit state machine

… only support vertex and fragment shaders, nothing else

(so stuck at features from 15+ years ago...)

So, we have the same problem as desktop graphics had 10 years ago:

• Driver overhead, cannot support newer hw features

The solution is also the same: we need to go to lower-levels

Since 1993…

WebGPU

WebGPU recognizes that we need to address modern requirements:

• Games, Advanced Visualization, AI
should use the mobile GPU better to improve energy efficiency

• This requires lower-level access, more modern API model

• AI and other neural workloads cry for general compute capabilities

• Need to squeeze this into a web-first framework (stability, security)

WebGPU

Yes, but how low-level? How this is going to be implemented?

Currently developed native, low-level graphics technologies:

• Windows: DirectX 12

• Apple: Metal

• Everything non-Apple: Vulkan

They are very similar; it is entirely possible to abstract them reasonably well!

WebGPU

WebGPU hits a middle ground between the complexities of WebGL
(OpenGL) and DX12/Metal/Vulkan:

• It hides some of the very low-level synchronization-, queue-, memory
management and presentation details

• It exposes the pipeline object that explicitly manages the states
connected to the rendering setup

• It exposes the pre-construction of commands to decrease CPU usage
at execution time

>>>>>>>

WebGPU

Ballpark numbers for Lines-of-Code for illustration:

Task WebGL WebGPU Vulkan

Draw a simple
triangle

≈120 ≈150 ≈1000

Vector add
computation

N/A ≈150 ≈470

"I'm not developing for the web,
why should I care?"
Getting some cross platform graphics working is notoriously hard

• You either learn at least 2 different APIs or

• Use some very large and complicated frameworks

However, WebGPU has bindings for the desktop too!

• You can link to it as a library

• And then suddenly you have a graphics solution working everywhere!

WebGPU has bindings for the following languages:

• JavaScript on the web

• C++, rust on the desktop

You can compile C++ to JavaScript with emscripten that supports WebGPU!

https://github.com/beaufortfrancois/webgpu-cross-platform-app
https://emscripten.org/

"I'm not developing for the web,
why should I care?"
Furthermore:

Today, there is no good entry point to learn modern 3D graphics APIs

• starting with any of the low-level APIs is extremely challenging

• starting with OpenGL requires you to unlearn many things later

WebGPU solves that by hitting a middle ground

Also, it requires 0 setup: it just works everywhere,
all you need is a browser and a text editor to get started

"I do work with web technologies,
whats new in it for me?"

• Compute Shaders

• Faster rendering

• More GPU features compared to WebGL

• Active development

Challenges on the web

There is no free lunch however, not everything is as easy, as with native
technologies:

• Security: undefined behaviour, invalid memory accesses, sandboxing:
these are very hard with GPUs

• Security is a trade-off against performance,
and the web does take security seriously

• Much wider scope of devices than with native,
large variety in capabilities and driver readiness
thus, heavy compromises in features

• Privacy: limit fingerprinting opportunities

"I'm a scientist, should I care?"

• No double precision support yet, not planned for 1.0 :(

However:

• More efficient visualization of millions of datapoints

• Draw very complex geometries in a platform independent way
-> scientific / interactive visualization for large data

• Added value in educational / later AR /VR settings

• Nice particle simulations,
advanced client side data processing ☺

WebGPU – The API

At the surface it is very similar to other GPU APIs:

• A device that represents the physical GPU
• Has a command queue to issue operations to

• Buffers, Textures for data storage

• Shader objects from text files (WGSL) to represent GPU
shaders/kernels

• Most "new" things are around pipelines, resource bindings and
command encoders

WGSL

WebGPU decided on its own shading language: WGSL

• Portable across all platforms(!), plain text format

• It is a bit rust like

• Somewhat restricted compared to other shading languages,
but functionally similar

• You need to always explicitly manage the bindings compared to GLSL

WGSL – vector add

struct Vector
{ // Comma is the separator, the last one is optional

data: array<f32>
};

@group(0) @binding(0) var<storage, read> A : Vector;
@group(0) @binding(1) var<storage, read> B : Vector;
@group(0) @binding(2) var<storage, read_write> C : Vector;

@compute @workgroup_size(128)
fn main(@builtin(global_invocation_id) idx : vec3<u32>)
{

let i = idx.x;
if (i >= 1024) { return; }
C.data[i] = A.data[i] + B.data[i];

}

"So, is it really heaven on Earth?"

Not yet

• The specification is not yet finalized, changes are still happening

• It is in a W3C candidate recommendation status

• Support:
Chrome and chromium-based browsers enabled support for WebGPU

• but other browsers have only experimental support

• Examples, explainers, docs are somewhat rare or out of date,
it is a new technology with all its shortcomings

https://docs.swmansion.com/TypeGPU/blog/troubleshooting/
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Experimental_features#graphics_canvas_webgl_and_webgpu

Will it stay?

The question is reasonable; many attempts have failed before.

• We think so, because of large demand for AI and games

• Otherwise, deploying a GPU accelerated neural network / LLM
solution is a nightmare

• Google is pushing this for a very long time.

• WebGPU is already getting adopted in many places!

Recommended reading

• Mozilla WebGPU API Docs

• WebGPU Specification

• WebGPU Shading Langauge Specification

Other useful links:

• https://webgpu.rocks/

• https://gpuweb.github.io/gpuweb/explainer/

• https://webgpufundamentals.org/webgpu/lessons/webgpu-from-
webgl.html

• https://github.com/beaufortfrancois/webgpu-cross-platform-app

Some Demos at:
https://gpgpu.hu/GPUDay2025

https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://gpuweb.github.io/gpuweb/explainer/
https://gpuweb.github.io/gpuweb/explainer/
https://gpuweb.github.io/gpuweb/explainer/
https://gpuweb.github.io/gpuweb/explainer/
https://webgpufundamentals.org/webgpu/lessons/webgpu-from-webgl.html
https://webgpufundamentals.org/webgpu/lessons/webgpu-from-webgl.html
https://github.com/beaufortfrancois/webgpu-cross-platform-app
https://gpgpu.hu/GPUDay2025/

Hungarian GPGPU Community on Discord

• Meeting place for all who are involved in or would
like to learn more about GPGPU technologies

• All APIs: CUDA, OpenCL, Vulkan, WebGPU, …

• All fields: Graphics, Compute, Vision, …

• All vendors: AMD, Intel, NVIDIA, …

• All levels: Students, Teachers, Professionals,
Scientists, …

• All topics: Programming, Hardware, Bugs,
Optimizations, Teaching, Trends, Events, News, …

	1. dia: Compute kernels in your browser
	2. dia: Graphics technologies on the web
	3. dia: Why do we need another API on the web?
	4. dia: WebGPU
	5. dia: WebGPU
	6. dia: WebGPU
	7. dia: WebGPU
	8. dia: "I'm not developing for the web, why should I care?"
	9. dia: "I'm not developing for the web, why should I care?"
	10. dia: "I do work with web technologies, whats new in it for me?"
	11. dia: Challenges on the web
	12. dia: "I'm a scientist, should I care?"
	13. dia: WebGPU – The API
	14. dia: WGSL
	15. dia: WGSL – vector add
	16. dia: "So, is it really heaven on Earth?"
	17. dia: Will it stay?
	18. dia: Recommended reading
	19. dia

